• Title/Summary/Keyword: bone strength

Search Result 499, Processing Time 0.03 seconds

The Effect of Ascorbic Acid on the Changes in Amounts of Pyridinoline form Bone Collagen during In vitro Aging (In vitro Aging에 있어서 콜라겐 성숙가교의 변화에 대한 비타민 C의 영향)

  • 김미향
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.501-506
    • /
    • 1997
  • As pyridinoline is one of the predominant cross-lins in a mature collagen, pyridinoline formation may be an essential step during the growth process to obtain normal mechanical strength in collagen fibrils. However, the excess formation of pyridinoline in collagen will probably make the tissue stiffer, less soluble and less digestible by enzymes. We investigated the changes of pyridinoline of bone collagen and the role of ascforbic acid(AsA) on the formation of pyridinoline. The pyridinoline content of bone collagen significantly increased during incubation for 1~5 weeks at 37$^{\circ}C$ in vitro. The addition of AsA decreased pyridinoline to half the amount found in controls with 5 week incubation. When dehydroascorbic acid(DHA) and L-2, 3-diketogulonic acid (DKG), the oxidative products of AsA, were supplemented to bone collagen solution instead of AsA, the content of pyridinoline in bone collagen was about 80% or 70% that of controls, respectively. These results suggest that pyridinoline content decreases by the addition of AsA in vitro. Furthermore, it was shown that AsA in oxidized from also affected the formation of pyridinoline.

  • PDF

Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part II. number and shapes

  • Lee, Kangsoo;Kim, Geug Tae;Lee, Yong Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • For further improvement of osseo-integration of bone crystal with a dental implant, a design optimization study is carried out for various holes inside its body to deliver bioactive materials and the effect of bioactive material injection on the bone crystal growing. When bioactive material is absorbed, the bone crystal can grow into holes, which would increase the strength of implant bonding as well as a surface integration. The stress concentrations near the uppermost outlet holes were reduced with increasing the number of outlet holes. A design improvement in the uppermost outlet was shown to be effective in reducing the stress concentration. For design parameters under consideration in this study, total area of outlet of 6.38 $mm^2$ and maximum stress of 1.114 MPa, which corresponds to type 6-C. It is due to the minimization of maximum stress and total area of outlet. The design of the outlet facing down was more effective in reducing the maximum stress value compared with a horizontal symmetry.

Bone Body Production and Red Color Body Development Using the Bone Body (본소지 제조와 그것을 이용한 붉은 색소지 개발)

  • Choi, Soo-Nyong;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.601-606
    • /
    • 2006
  • For the purpose of development of red color stain body, bone body which can be fired at 1180$^{\circ}C$ and has a higher degree of whiteness and transmission was developed and a property experiment depending on the content of $Fe_2O_3$ was performed. For manufacturing this body, 9% addition of bone ash to commercialized white body resulted in the best whiteness and proper physical characteristics. In an experiment of oxidized iron addition using this body as a basis, red color stain body fired up to 1150$^{\circ}C$ following the addition of 6% oxidized iron showed physical characteristics such as 5.4R color closer to theory color, 0.08% water absorption rate, 9.1% shrinkage, and 1861 kgf/$cm^2$ bending strength, which implies that this body is suitable for red color stain body.

FEM Analysis of Lumbar Interbody Fusion using the Cage and Screw in Relation to Bone Mineral Density (골밀도 변화에 따른 cage와 나사를 이용한 추체간 유합술의 유한요소 해석)

  • Kim H. S.;Park J. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.525-530
    • /
    • 2004
  • Three dimensional finite element models of lumbar interbody fusion using rage and screws were constructed for the simulation of stress distribution and maximum displacement. It is also performed to investigate the efforts of osteoporosis and the location of cage on the stress distribution. It is known from the results that the increase of the strength of trabecular bone causes to decrease the stress of cortical bone and to increase the stress of trabecular bone. And it is found that the trend of stress distribution is changed by the change of location of cage and proper location of cage enhances the rate of operational success.

Osteoporotic Ankle Fracture (골다공증성 족관절 골절)

  • Hyobeom Lee;Cheolhyun Kim;Gab-Lae Kim
    • Journal of Korean Foot and Ankle Society
    • /
    • v.27 no.2
    • /
    • pp.43-48
    • /
    • 2023
  • The incidence of osteoporotic ankle fractures is increasing as the population ages. These fractures are becoming more common in clinical practice and require careful management because of the higher likelihood of developing complications than typical ankle fractures. The introduction of a method for measuring the ankle joint bone mineral density is a valuable tool for assessing the bone quality of the ankle joint. By evaluating the bone mineral density, healthcare professionals can better understand the extent of osteoporosis and the overall strength of the ankle joint. This information is crucial for determining the appropriate treatment for individual fractures. Several factors must be considered when deciding on the treatment for osteoporotic ankle fractures. These include the ankle joint bone mineral density, skin condition, any comorbidities the patient may have, and the patient's functional demands. Taking these factors into consideration allows healthcare providers to tailor the treatment plan to the specific needs and the circumstances of each patient. By applying the appropriate treatment, it is expected that the complications associated with osteoporotic ankle fractures can be minimized, and the prognosis for patients can be improved.

The Effects of Plyometric Exercise on Body Composition and Physical Fitness in Obese Adolescents

  • Sang-Ho LEE;Hoo KIM;Jun-Su KIM
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.21-28
    • /
    • 2023
  • Purpose: This study was to investigate the effect of a 12-week plyometric training on body composition, physical fitness and bone mineral density in obese male adolescents. Method: Twenty adolescent boys who are obese were randomly assigned to a control group (CON, n=10) or plyometic exercise group (EXE, n=10). The EXE group was performed 3 times per week for 12 weeks. The body composition, physical fitness, and bone mineral density were measured before and after the 12 weeks intervention. Results: The results of this study were as follows: i) In EXE group, the fat mass was significantly decreased between pre and post, whereas the difference of the body weight, BMI, and LBM were not significant. ii) Among the physical fitness factors, grip strength, muscular endurance, and 2 0m shuttle running were significantly improved but flexibility did not show any significant difference. iii) The bone mineral density was significantly improved between pre and post in EXE group. Conclusion: These results suggested that plyometric training for 12 weeks may be effective in improving body composition, physical fitness, and bone mineral density in obese adolescents. Further implications were discussed.

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Fiber Type Effects on the Flexural Behavior of Steel Fiber Reinforced Concrete Beams (강섬유의 형태에 따른 SFRC보의 휨거동에 관한 연구)

  • Jeon, Chan Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.95-106
    • /
    • 1992
  • This paper presents a comparative evaluation of five different types of steel fibers used as reinforcing material in concrete beams. Two types of plain and RC beams were prepared to compare the relative flexural behavior. The fibers used were dog bone (paddled), both ends hooked. コ-type straight. crimped and wavy type with aspect ratio of 43 to 75. Fiber volume fraction of 1 to 2% were used while shear span to depth ratio (aid) and steel ratio p were fixed. Fiber reinforcement effect index Ef and effective toughness index Te were adopted to evaluate fiber reinforcing effects. The effect of fiber reinforcement on flexural strength is higher in plain beams than in RC beams. Hooked and dog bone type fibers were found to be more effective than the other type ones in enhancing the flexural strength and post-peak energy absorption capacity of concrete beams.

  • PDF

A Study on Fabrication of 3D Porous Scaffold Combined with Polymer Deposition System and a Salt Leaching Method (폴리머 적층 시스템과 염 침출법을 결합한 3차원 다공성 인공지지체 제작)

  • Shim, Hae-Ri;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.86-92
    • /
    • 2016
  • In this study, we used a polymer deposition system, based on fused deposition modeling, to fabricate the 3D scaffold and then fabricated micro-pores on a 3D scaffold using a salt leaching method. Materials included polycaprolactone (PCL) and sodium chloride (NaCl). The 3D porous scaffolds were fabricated according to blending ratio such as PCL (70 wt%)/NaCl (30 wt%) and PCL (50 wt%)/NaCl (50 wt%). The 3D porous scaffolds were observed by scanning electron microscopy. The results showed that 3D porous scaffolds had a deposition width of $500{\mu}m$, contained a pore size of $500{\mu}m$ and below $100{\mu}m$. To evaluate the 3D porous scaffolds for bone tissue engineering, we carried out the cell proliferation experiment using a CCK-8 and a mechanical strength test using a universal testing machine. In summary, the 3D porous scaffold was found to be suitable for cancellous bone of human in accordance with the result of in-vitro cell proliferation and mechanical strength. Thus, a 3D porous scaffold could be a promising approach for effective bone regeneration.

A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE (가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구)

  • Kim, Tae-In
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF