• 제목/요약/키워드: bone marrow microenvironment

검색결과 26건 처리시간 0.027초

Phytoecdysteroid가 조골세포와 파골세포의 성장과 활성에 미치는 영향 (Effects of Phytoecdysteroid on the Proliferation and Activity of Bone Cells)

  • 고선일
    • Journal of Oral Medicine and Pain
    • /
    • 제32권2호
    • /
    • pp.129-135
    • /
    • 2007
  • Ecdysteroid는 곤충의 탈피호르몬으로 알려져 있으며, phytoecdysteroid는 식물의 ecdysteroid로 포유동물에 여러 유용한 효과를 가진다고 알려져 있다. 본 연구는 식물의 phytoecdysteroids가 골대사에서 미치는 영향을 알아보기 위하여 세포수준에서 관찰하였다. 즉 조골세포에 미치는 영향을 알아보기 위하여 세포증식율, 염기성인산분해효소 활성, gelatinase 활성의 변화를 관찰하였고, 파골세포에 미치는 영향을 알아보기 위하여 tartrate-저항성 인산분해효소 양성인 다핵세포의 형성을 측정함으로써 관찰하였다. Phytoecdysteroid 처리에 의해 조골세포의 ALP 활성과, gelatinase의 활성이 증가되었다. 또한 phytoecdysteroid는 macrophage-colony stimulating factor (M-CSF)와 receptor activator of NF-kB ligand (RANKL)에 의해 유도된 파골세포의 생성을 감소시켰다. 이상의 결과 phytoecdysteroid는 조골세포와 파골세포의 활성 및 생성을 변화 시킴으로써 골수의 미세환경에서 세포내 조절작용에 관여하리라 여겨진다.

Angiopoietin-2가 조골세포와 파골세포의 성장과 활성에 미치는 영향 (Effects of Angiopoietin-2 on the Proliferation and Activity of Ostoeblasts and Osteoclasts)

  • 고선일
    • Journal of Oral Medicine and Pain
    • /
    • 제31권1호
    • /
    • pp.17-25
    • /
    • 2006
  • 혈관신생(angiogenesis)은 골조직을 포함하는 모든 조직의 발생 및 개조(remodeling) 과정에 필요하다. 본 연구는 혈관 신생에 관여하는 단백질인 angiopoietin-2가 골대사에서 미치는 영향을 알아보기 위하여 세포수준에서 관찰하였다. 즉 조골 세포에 미치는 영향을 알아보기위하여 세포생존률, 염기성인산분해효소 활성, gelatinase 활성 및 nitric oxide 생성을 관찰하였고, 파골세포에 미치는 영향을 알아보기 위하여 tartrate-저항성 인산분해효소 양성인 다핵세포의 형성 및 파골세포전구세포 배양 후 흡수면적을 측정함으로써 관찰하였다. Angiopoietin-2는 조골세포의 세포생존률 및 염기성 인산분해효소 활성을 증가시켰으며, gelatinase와 nitric oxide 생성의 증가시켰다. 또한 angiopoietin-2는 파골세포 생성 및 활성을 감소시켰다. 따라서 angiopoietin-2는 골수의 미세환경에서 세포의 조절작용을 하는 단백질로 여겨진다.

임상적용을 위한 세포치료제로서의 성체 중간엽줄기세포 (Adult Mesenchymal Stem Cells for Cell Therapy in Clinical Application)

  • 송인환
    • Journal of Yeungnam Medical Science
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Human bone marrow-derived mesenchymal stem cells (MSCs) are a rare population of undifferentiated cells that have the capacity of self renewal and the ability to differentiate into mesodermal phenotypes, including osteocytes, chondrocytes, and adipocytes in vitro. Recently, MSCs have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well analyzed. Many reports showed that transplanted MSCs enhanced regeneration as well as functional improvement of damaged organs and tissues. The wide differentiation plasticity of MSCs was expected to contribute to their demonstrated efficacy in a wide variety of experimental animal models and in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for differentiation in tissue repair. This review describes what is known about the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for further applications in regenerative medicine.

  • PDF

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.

어린 B세포가 갖는 $V_H$유전자 발현의 특성 (The Characteristics of $V_H$ Gene Family Expression in Early B Cells)

  • JEONG Hyun Do;HUH Min-Do
    • 한국수산과학회지
    • /
    • 제28권1호
    • /
    • pp.114-122
    • /
    • 1995
  • B 세포가 다양화되어 가는 기작을 규명한다는 것은 면역 반응의 조절이 생체 내에서 어떻게 이루어지고 있는 가를 이해하는데 가장 기본이 되는 것이다. 본 연구는 기 확립한 in situ hybridization 기법을 이용하여 항체의 항원 결합 부위 유전자가 B 세포의 발달 과정 중 어떻게 조절이 되고 있으며 이것은 B 세포의 다양화라는 측면과 어떻게 연관이 되어 있는 지를 분석하였다. Gestation 시기가 16일, 18일, 19일, 20일 되었을 때간에 있는 B 세포는 $V_H7183$$V_HQ52$두개의 $V_H$ 유전자군을 가장 많이 이용하고 있었으며 이러한 경향은 gestation 기간 전체를 통하여 변화 없이 일정하게 나타났다. 간에 있는 fetal B 세포를 differentiation 단계별로 구분하기 위하여 표면 항체를 갖고 있는 집단과, 갖고 있지 않은 두 집단으로 나눈 후 각 집단이 발현하는 $V_H$ 유전자를 분석하였을 때 뚜렷한 차이를 나타냄이 없이 양쪽 집단 모두 fetus의 특징적 $V_H$ 이용양식을 보여주었다. 또 다른 조혈 기능 임파 기관인 fetal spleen에 있는 B 세포 또한 fetal liver의 B 세포와 동일한 양상의 $V_H$ 유전자 이용 양식을 보여 주어 각 임파 기관별 B 세포의 다양성 차이를 발견 할 수 없었다. 이와 같이 adult의 B 세포에 대비하여 독특한 $V_H$ 유전자 이용 양상을 보이는 fetal B 세포의 전구 세포를 4주 이상 미리 형성시킨 adult 골수 세포와 직접 접촉시키면서 발달, 성숙시킨 후 다시 나타난 B 세포를 분석하여도 여전히 fetal B 세포로서의 $V_H$ 유전자 이용 양상을 보이는 것은 fetal B세포의 전구 세포가 갖고 있는 유전적 잠재력에 의한 것이지 환경이나 B 세포의 differentiation 단계 또는 B 세포가 머무르고 있는 특수 임파 장기의 생리적 환경 등에 좌우되는 것이 아니라는 것이 확인되었다.

  • PDF

Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells

  • Kim, Yu-Ri;Eom, Ki-Seong
    • IMMUNE NETWORK
    • /
    • 제14권6호
    • /
    • pp.296-306
    • /
    • 2014
  • There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-${\kappa}B$. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis.

Significance of Some Proliferation Markers and Some Prognostic Factors in Patients with Multiple Myeloma and their Impact on the Patients' Survival

  • Abdelgawad, Iman A.;Radwan, Noha H.;Shafik, Roxan E.;Shokralla, Hala A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2389-2394
    • /
    • 2016
  • Background: Multiple myeloma (MM) is influenced by genetic and micro-environmental changes. Malignant plasma cells produce an abnormal monoclonal immunoglobulin, as well as cytokines, such as IL-10 and IL-6 which stimulate cells of the bone marrow microenvironment (BMM) and cause dysfunction and failure of many organs. B cell activating factor (BAFF), IL6, IL10 are known to influence the growth & survival of the malignant clone. Aim: The objectives of the present study were to investigate the circulating levels of BAFF, IL-10 and IL-6, correlate them with well-known parameters of disease activity in patients with MM, and to detect their impact on the patients' survival. Materials and Methods: This study was conducted on 89 newly diagnosed MM patients and seventy apparently healthy volunteers as a normal control group. BAFF, IL6, IL10 were measured by ELISA for both groups. Survival analysis was performed for all patients. Results: Studied markers were higher in the MM patients compared to the normal control subjects. Patients' survival was improved by high serum BAFF levels. Conclusions: High levels of BAFF were found to improve patients' survival. BAFF and IL-6 can be considered probable diagnostic markers for MM.

Development of Natural Killer Cells from Hematopoietic Stem Cells

  • Yoon, Suk Ran;Chung, Jin Woong;Choi, Inpyo
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Natural killer (NK) cells play a crucial role in innate immune system and tumor surveillance. NK cells are derived from $CD34^+$hematopoietic stem cells and undergo differentiation via precursor NK cells in bone marrow (BM) through sequential acquisition of functional surface receptors. During differentiation of NK cells, many factors are involved including cytokines, membrane factors and transcription factors as well as microenvironment of BM. NK cells express their own repertoire of receptors including activating and inhibitory receptors that bind to major histocompatibility complex (MHC) class I or class I-related molecules. The balance between activating and inhibitory receptors determines the function of NK cells to kill targets. Binding of NK cell inhibitory receptors to their MHC class I-ligand renders the target cells to be protected from NK cell-mediated cytotoxicity. Thus, NK cells are able to discriminate self from non-self through MHC class I-binding inhibitory receptor. Using intrinsic properties of NK cells, NK cells are emerging to apply as therapeutic agents against many types of cancers. Recently, NK cell alloactivity has also been exploited in killer cell immunoglobulin-like receptor mismatched haploidentical stem cell transplantation to reduce the rate of relapse and graft versus host disease. In this review, we discuss the basic mechanisms of NK cell differentiation, diversity of NK cell receptors, and clinical applications of NK cells for anti-cancer immunotherapy.

Significance of Proliferation Markers and Prognostic Factors in Egyptian Patients with Multiple Myeloma

  • Abdelgawad, Iman A;Radwan, Noha H;Shafik, Roxan E;Shokralla, Hala A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1351-1355
    • /
    • 2016
  • Background: Multiple myeloma (MM) is influenced by genetic and micro-environmental changes. Malignant plasma cells produce an abnormal monoclonal immunoglobulin, as well as cytokines, such as IL-10 and IL-6 which stimulate cells of the bone marrow microenvironment (BMM) and cause dysfunction and failure of many organs. B cell activating factor (BAFF), IL6 and IL10 are known to influence the growth and survival of malignant clones. Aim: The objectives of the present study were to investigate the circulating levels of BAFF, IL-10 and IL-6, correlate them with well-known parameters of disease activity in patients with MM, and to detect their impact on patients' survival. Materials and Methods: This study was conducted on 89 newly diagnosed MM patients and seventy apparently healthy volunteers as a normal control group. BAFF, IL6, IL10 were measured by ELISA for both groups and survival analysis was performed for all patients. Results: Studied markers were higher in the MM patients compared to the normal control subjects. Patients survival was improved by high serum BAFF levels. Conclusions: High levels of BAFF were found to improve patients' survival. BAFF and IL-6 can be considered probable diagnostic markers for MM.

Gender-independent efficacy of mesenchymal stem cell therapy in sex hormone-deficient bone loss via immunosuppression and resident stem cell recovery

  • Sui, Bing-Dong;Chen, Ji;Zhang, Xin-Yi;He, Tao;Zhao, Pan;Zheng, Chen-Xi;Li, Meng;Hu, Cheng-Hu;Jin, Yan
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.12.1-12.14
    • /
    • 2018
  • Osteoporosis develops with high prevalence in both postmenopausal women and hypogonadal men. Osteoporosis results in significant morbidity, but no cure has been established. Mesenchymal stem cells (MSCs) critically contribute to bone homeostasis and possess potent immunomodulatory/anti-inflammatory capability. Here, we investigated the therapeutic efficacy of using an infusion of MSCs to treat sex hormone-deficient bone loss and its underlying mechanisms. In particular, we compared the impacts of MSC cytotherapy in the two genders with the aim of examining potential gender differences. Using the gonadectomy (GNX) model, we confirmed that the osteoporotic phenotypes were substantially consistent between female and male mice. Importantly, systemic MSC transplantation (MSCT) not only rescued trabecular bone loss in GNX mice but also restored cortical bone mass and bone quality. Unexpectedly, no differences were detected between the genders. Furthermore, MSCT demonstrated an equal efficiency in rectifying the bone remodeling balance in both genders of GNX animals, as proven by the comparable recovery of bone formation and parallel normalization of bone resorption. Mechanistically, using green fluorescent protein (GFP)-based cell-tracing, we demonstrated rapid engraftment but poor inhabitation of donor MSCs in the GNX recipient bone marrow of each gender. Alternatively, MSCT uniformly reduced the $CD3^+T$-cell population and suppressed the serum levels of inflammatory cytokines in reversing female and male GNX osteoporosis, which was attributed to the ability of the MSC to induce T-cell apoptosis. Immunosuppression in the microenvironment eventually led to functional recovery of endogenous MSCs, which resulted in restored osteogenesis and normalized behavior to modulate osteoclastogenesis. Collectively, these data revealed recipient sexually monomorphic responses to MSC therapy in gonadal steroid deficiency-induced osteoporosis via immunosuppression/anti-inflammation and resident stem cell recovery.