• 제목/요약/키워드: bone marrow microenvironment

검색결과 30건 처리시간 0.02초

Role of neuropeptide Y in the bone marrow hematopoietic stem cell microenvironment

  • Park, Min Hee;Min, Woo-Kie;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.645-646
    • /
    • 2015
  • The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relatively unexplored. In this study, we demonstrated that NPY deficient mice have significantly reduced HSC numbers and impaired bone marrow regeneration due to apoptotic destruction of SNS fibers and/or endothelial cells. Moreover, NPY treatment prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while conditional knockout mice lacking the Y1 receptor in macrophages did not restore bone marrow dysfunction in spite of NPY injection. Transforming growth factor-beta (TGF-β) secreted by NPY-mediated Y1 receptor stimulation in macrophages plays a key role in neuroprotection and HSC survival in the bone marrow. Therefore, this study reveals a new role of NPY in bone marrow HSC microenvironment, and provides an insight into the therapeutic application of this neuropeptide.

Diagnostic and Prognostic Relevance of Bone Marrow Microenvironment Components in Non Hodgkin's Lymphoma Cases Before and After Therapy

  • Soliman, Amira H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권12호
    • /
    • pp.5273-5280
    • /
    • 2016
  • Objective: To evaluate stromal cells of the bone marrow microenvironment (BMM) in bone marrow trephine biopsy (BMTB) specimens, with a focus on fibronectin, tumor necrosis factor- alpha (TNF-${\alpha}$) and L-selectin in Non-Hodgkin's lymphoma (NHL) patients, before and after therapy. Materials and Methods: A total of 80 de novo NHL patients, 64 with B-cell lymphomas 80%, (follicular cell lymphoma (FCL) in 32, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in 12, and diffuse large cell lymphoma in 20) and 16 with T-cell lymphomas (20%) all diagnosed as T-Lymphoblastic lymphomas, were evaluated before and after therapy. For comparison, 25 age and sex matched BM donors, were included as a control group. BMTB material and BM aspirates were taken for morphological assessment of stromal cells, the plasma of these samples being examined for $TNF{\alpha}$ and L-selectin by ELISA, and fibronectin by radial immunodiffusion (RID). Results: BM stromal cells comprising reticular macrophages and fibroblasts were elevated in 53.3% of NHL cases at diagnosis, while BM fibronectin levels were decreased and BM $TNF{\alpha}$ and L-selectin were higher than in controls (p<0.05). In NHL cases, elevated values of BM $TNF{\alpha}$ and BM L-selectin were associated with signs of aggressive disease, including >1 extra nodal sites, detectable B symptoms, high grade, BM and CNS invasion, and a high International prognostic index (IPI) (p<0.05). Conclusion: BMM components, $TNF{\alpha}$, L-selectin and fibronectin, in NHL can be useful in evaluating disease activity, extent and response to treatment and as prognostic markers according to the IPI.

p38 mitogen-activated protein kinase contributes to TNFα-induced endothelial tube formation of bone-marrow-derived mesenchymal stem cells by activating the JAK/STAT/TIE2 signaling axis

  • Sukjin Ou;Tae Yoon Kim;Euitaek Jung;Soon Young Shin
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.238-243
    • /
    • 2024
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BM-MSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.

Reduced Osteogenic Differentiation Potential In Vivo in Acute Myeloid Leukaemia Patients Correlates with Decreased BMP4 Expression in Mesenchymal Stromal Cells

  • Pedro L. Azevedo;Rhayra B. Dias;Liebert P. Nogueira;Simone Maradei;Ricardo Bigni;Jordana S. R. Aragao;Eliana Abdelhay;Renata Binato
    • International Journal of Stem Cells
    • /
    • 제15권2호
    • /
    • pp.227-232
    • /
    • 2022
  • The osteogenic differentiation potential of mesenchymal stromal cells (hMSCs) is an essential process for the haematopoiesis and the maintenance of haematopoietic stem cells (HSCs). Therefore, the aim of this work was to evaluate this potential in hMSCs from AML patients (hMSCs-AML) and whether it is associated with BMP4 expression. The results showed that bone formation potential in vivo was reduced in hMSCs-AML compared to hMSCs from healthy donors (hMSCs-HD). Moreover, the fact that hMSCs-AML were not able to develop supportive haematopoietic cells or to differentiate into osteocytes suggests possible changes in the bone marrow microenvironment. Furthermore, the expression of BMP4 was decreased, indicating a lack of gene expression committed to the osteogenic lineage. Overall, these alterations could be associated with changes in the maintenance of HSCs, the leukaemic transformation process and the development of AML.

Effect of Cytokines and bFGF on the Osteoclast Differentiation Induced by $1\;{\alpha},25-(OH)_2D_3$ in Primary Murine Bone Marrow Cultures

  • Chae, Han-Jung;Kang, Jang-Sook;Bang, Byung-Gwan;Cho, Seoung-Bum;Han, Jo-Il;Choi, Joo-Young;Kim, Hyung-Min;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권6호
    • /
    • pp.539-546
    • /
    • 1999
  • Bone is a complex tissue in which resorption and formation continue throughout life. The bone tissue contains various types of cells, of which the bone forming osteoblasts and bone resorbing osteoclasts are mainly responsible for bone remodeling. Periodontal disease represents example of abnormal bone remodeling. Osteoclasts are multinucleated cells present only in bone. It is believed that osteoclast progenitors are hematopoietic origin, and they are recruited from hematopoietic tissues such as bone marrow and circulating blood to bone. Cells present in the osteoclast microenvironment include marrow stromal cells, osteoblasts, macrophages, T-lymphocytes, and marrow cells. These cells produce cytokines that can affect osteoclast formation. In vitro model systems using bone marrow cultures have demonstrated that $IL-l{\beta},\;IL-3,\;TNF-{\alpha},$ bFGF can stimulate the formation of osteoclasts. In contrast, IL-4 inhibits osteoclast formation. Knowledge of cytokines and bFGF that affect osteoclast formation and their capacity to modulate the bone-resorbing process should provide critical insights into normal calcium homeostasis and disorders of bone turnover such as periodontal disease, osteoporosis and Paget's disease.

  • PDF

Challenges and innovations in hematopoietic stem cell transplantation: exploring bone marrow niches and new model systems

  • Byung-Chul Lee
    • BMB Reports
    • /
    • 제57권8호
    • /
    • pp.352-362
    • /
    • 2024
  • Hematopoietic stem cell transplantation (HSCT) remains an indispensable therapeutic strategy for various hematological diseases. This review discusses the pivotal role of bone marrow (BM) niches in influencing the efficacy of HSCT and evaluates the current animal models, emphasizing their limitations and the need for alternative models. Traditional animal models, mainly murine xenograft, have provided significant insights, but due to species-specific differences, are often constrained from accurately mimicking human physiological responses. These limitations highlight the importance of developing alternative models that can more realistically replicate human hematopoiesis. Emerging models that include BM organoids and BM-on-a-chip microfluidic systems promise enhanced understanding of HSCT dynamics. These models aim to provide more accurate simulations of the human BM microenvironment, potentially leading to improved preclinical assessments and therapeutic outcomes. This review highlights the complexities of the BM niche, discusses the limitations of current models, and suggests directions for future research using advanced model systems.

골수 미세환경에서 조혈줄기세포의 기능조절에 대한 고찰- 현재 및 새로운 개념 (Hematopoietic Stem Cells and Bone Marrow Microenvironment: Current and Emerging Concepts)

  • 이원종;박성현;박준희;오성환;이동준
    • 생명과학회지
    • /
    • 제32권6호
    • /
    • pp.468-475
    • /
    • 2022
  • 줄기세포와 전구세포 사이의 기능 분석은 여러 조직 특히 혈액에서 잘 확립되어 있다. 특히 조혈줄기세포는 골수 니쉬에서 자가재생능 및 재구성능을 가지고 있으며, 골수 내 기질세포는 조직 기능 조절에 큰 영향을 미친다. 최근 연구에서는 포유동물 줄기세포의 기능은 니쉬 세포 내에서 실험적으로 처음 증명되었고, 특히 미세환경에 의해 종양발생이 가능하다는 증거를 나타내고 있다. 고대에서부터 뼈와 피의 관계는 생체 내 필수불가결인 관계로 진화 과정을 거쳐 포유류의 줄기세포에 대해 최초로 제안되었고, 실험적으로 증명된 니쉬세포를 포함한 미세환경과의 복잡한 상호 관계를 규명하였다. 여러 골수 기질세포는 조혈줄기세포의 기능 조절을 하며, 일부의 기능장애는 골수 이형성 및 백혈병을 유발할 수 있다. 현재까지 여러 기질세포에 대한 맵핑이 되지 않아 현재 많은 연구자들이 단일 분자 수준에서 개개의 기질세포 유형을 파악하는 데이터가 필요하다고 주장하고 있으며 이를 바탕으로 골수 내 조혈줄기세포의 특정 기능을 파악할 수 있다고 볼 수 있다. 따라서 본 총설을 통해 조혈줄기세포 및 미세환경에 대한 이전 연구들의 흥미로운 문제를 논의하고, 조혈줄기세포와 골수 니쉬에 대한 현재 및 새로운 개념을 요약하고자 한다.

Cannabidiol Promotes Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in the Inflammatory Microenvironment via the CB2-dependent p38 MAPK Signaling Pathway

  • Lin Li;Jin Feng;Lei Sun;Yao-wei Xuan;Li Wen;Yun-xia Li;Shuo Yang;Biao Zhu;Xiao-yu Tian;Shuang Li;Li-sheng Zhao;Rui-jie Dang;Ting Jiao;Hai-song Zhang;Ning Wen
    • International Journal of Stem Cells
    • /
    • 제15권4호
    • /
    • pp.405-414
    • /
    • 2022
  • Background and Objectives: Chronic inflammation of bone tissue often results in bone defects and hazards to tissue repair and regeneration. Cannabidiol (CBD) is a natural cannabinoid with multiple biological activities, including anti-inflammatory and osteogenic potential. This study aimed to investigate the efficacy and mechanisms of CBD in the promotion of bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation in the inflammatory microenvironment. Methods and Results: BMSCs isolated from C57BL/6 mice, expressed stem cell characteristic surface markers and presented multidirectional differentiation potential. The CCK-8 assay was applied to evaluate the effects of CBD on BMSCs' vitality, and demonstrating the safety of CBD on BMSCs. Then, BMSCs were stimulated with lipopolysaccharide (LPS) to induce inflammatory microenvironment. We found that CBD intervention down-regulated mRNA expression levels of inflammatory cytokines and promoted cells proliferation in LPS-treated BMSCs, also reversed the protein and mRNA levels downregulation of osteogenic markers caused by LPS treatment. Moreover, CBD intervention activated the cannabinoid receptor 2 (CB2) and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. While AM630, a selective CB2 inhibitor, reduced phosphorylated (p)-p38 levels. In addition, AM630 and SB530689, a selective p38 MAPK inhibitor, attenuated the enhancement of osteogenic markers expression levels by CBD in inflammatory microenvironment, respectively. Conclusions: CBD promoted osteogenic differentiation of BMSCs via the CB2/p38 MAPK signaling pathway in the inflammatory microenvironment.

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)

  • Nam, Sorim;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2019
  • Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.