• Title/Summary/Keyword: bonding temperature

Search Result 1,064, Processing Time 0.033 seconds

HP LED의 열거동형상 분석을 위한 thermal simulation

  • Lee, Seung-Min;Yang, Jong-Gyeong;Lee, Hyeon-Hui;Park, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.191-191
    • /
    • 2009
  • In this paper, we have confirmed the temperature of LED chip and McPCB with thermal simulation program which is CFDedign V10 for analysis the thermal flow of HP LED package. we have known that the heat from LED chip is transferred through heat slug to copper layer of McPCB. the temperature of LED chip shows 85.11 [$^{\circ}C$], which shows the temperature gap of 7.52 [$^{\circ}C$] against McPCB. the gap of temperature affect reliability of the wire bonding and die attachment. therefore, copper layer of heat slug on the McPCB should designed with the largest dimension.

  • PDF

Development of High-Temperature Solders: Contribution of Transmission Electron Microscopy

  • Bae, Jee-Hwan;Shin, Keesam;Lee, Joon-Hwan;Kim, Mi-Yang;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.89-94
    • /
    • 2015
  • This article briefly reviews the results of recently reported research on high-temperature Pb-free solder alloys and the research trend for characterization of the interfacial reaction layer. To improve the product reliability of high-temperature Pb-free solder alloys, thorough research is necessary not only to enhance the alloy properties but also to characterize and understand the interfacial reaction occurring during and after the bonding process. Transmission electron microscopy analysis is expected to play an important role in the development of high-temperature solders by providing accurate and reliable data with a high spatial resolution and facilitating understanding of the interfacial reaction at the solder joint.

Evaluation of Environmental Fatigue Strength in Adhesive Bonding of Different Materials (이종재료 접착제 접합부의 환경 피로강도 평가)

  • 임재규;이중삼;윤호철;유성철
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.99-105
    • /
    • 2002
  • One of the important advantage of adhesive bonded joint can combine the different materials. The joint that bonded by structural adhesive bond must keep a large force and its strength is affected by some environmental factors such as temperature and submergence time in water. In order to advance the fatigue strength of adhesive bonded joint, mostly put a surface treatment on the surface. This study was researched the effect of air temperature, submergence time, submergence temperature and surface treatment on the fatigue strength. We found that submergence temperature has the most effect and low plasma treatment specimens have the most fatigue strength.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

Microstructure and Mechanical Properties of AA6061/AA5052/AA1050 Alloy Fabricated by Cold Roll-Bonding and Subsequently Annealed

  • Seong-Hee Lee;Sang-Hyeon Jo;Jae-Yeol Jeon
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.439-446
    • /
    • 2023
  • Changes in the microstructure and mechanical properties of as-roll-bonded AA6061/AA5052/AA1050 three-layered sheet with increasing annealing temperature were investigated in detail. The commercial AA6061, AA5052 and AA1050 sheets with 2 mm thickness were roll-bonded by multi-pass rolling at ambient temperature. The roll-bonded Al sheets were then annealed for 1 h at various temperatures from 200 to 400 ℃. The specimens annealed up to 250 ℃ showed a typical deformation structure where the grains are elongated in the rolling direction in all regions. However, after annealing at 300 ℃, while AA6061 and AA1050 regions still retained the deformation structure, but AA5052 region changed into complete recrystallization. For all the annealed materials, the fraction of high angle grain boundaries was lower than that of low angle grain boundaries. In addition, while the rolling texture of the {110}<112> and {123}<634> components strongly developed in the AA6061 and AA1050 regions, in the AA5052 region the recrystallization texture of the {100}<001> component developed. After annealing at 350 ℃ the recrystallization texture developed in all regions. The as-rolled material exhibited a relatively high tensile strength of 282 MPa and elongation of 18 %. However, the tensile strength decreased and the elongation increased gradually with the increase in annealing temperature. The changes in mechanical properties with increasing annealing temperature were compared with those of other three-layered Al sheets fabricated in previous studies.

Selective Carbonization and Nitridation of Titanium in (ZrTi)O2 Powders Synthesized by Copreciptation Method

  • Shin Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.662-666
    • /
    • 2005
  • Solid solutions of $(Zr/Ti)O_2$ were prepared in powder form by the coprecipitation technique. After mixing with carbon or exposing to nitrogen gas at elevated temperature, titanium cations selectively diffused out from the oxide compound to form titanium carbide (TiC) or titanium nitride (TiN), respectively. TiN formed strong interfacial contacts between the oxide grains. In contrast, TiC formed as small crystallites on oxide grains but did not bind the matrix grains together. TiN therefore played a role in strengthening the interparticle bonding, but TiC weakened the bonding between grains. Partial diffusion of titanium cations also led to nanolayered structure being formed between the oxide grains, which provided weak interfacial layers that fractured in a step-wise fashion.

Properties of Butt Joint in $Nb_{3}$Sn Conductors with change of Surface Pressure (접촉 면압에 따른 $Nb_{3}$Sn 도체의 Butt 접합부 특성)

  • 이호진;김기백;김기만
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.253-255
    • /
    • 2002
  • Since a butt Joint is smaller than a lap type joint, it is expected to have smaller AC losses. The butt joint is produced by the diffusion bonding of the contacting surface under pressured and heated condition. It is important to find robust joining conditions, because butt joint has small contact area and has the shape by which the quality of bonding is hard to be checked. In this research, the loading pressure is considered as the joining parameter to find optimum joining condition. The DC resistance of the joint may be changed by the surface pressure during joining process, because the superconducting strands near the contact surface are failed by large plastic deformation. The range from 10 MPa to 18 MPa is expected optimum surface pressure in the conditions of 1 hour heating time and $750^{\circ}C$ temperature in the vacuum furnace.

  • PDF

Studies on the effect of the intermolecular hydrogen bonding on the vibrational frequencies of the acetonitrile under matrix isolation conditions at liquid-$N_2$ temperature (액체질소온도에서 매트릭스에 의해 격리된 아세토니트릴 분자의 진동주파수에 미치는 분자간 수소결합의 영향에 관한 연구)

  • Ma, Keum Ja;Jeong, Jong Hak;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.79-89
    • /
    • 1994
  • Interactions between the acetonitrile and other organic molecules such as furan, pyrrole, pyrrolidine, thiophene, tetrahydrothiophene and acetaldehyde was studied with the infrared absorption spectroscopy under matrix isolation conditions. Xe was used as a major matrix material. Acetonitrile showed strong interactions with pyrrole and thiophene, and little interactions with pyrrolidine and acetaldehyde.

  • PDF

알루미늄의 常溫壓接에 관한 硏究 II

  • 강문진;이철구;엄기원
    • Journal of Welding and Joining
    • /
    • v.4 no.1
    • /
    • pp.32-39
    • /
    • 1986
  • This paper was studied about the influence of oxidized films on workability in cold pressure welding. In preceding studies, the principal foci of the studies about pressure welding were considered several factors(surface manufacturing methods, surface roughness, pressure welding speed and surface temperature). But the influence to the growth of oxidation have hardly known well. So the purpose of this paper consists in solving the question above and proposing the optimal states of the pressure welding. Therefore the results obtained is as the following; When the oxidation time is within about 2 minutes, the bonding strength is very good after surface manufacturing of the neighboring to be bonded. The more surfaces are fine the more bonding strength is excellent. Above all, the optimal condition of cold pressure welding is the state that the characteristic value is 38% with smooth surface and without oxidation.

  • PDF

Properties of Deep Eutectic Solvents (DESs) and Their Applications (깊은 공융 용매 (DESs) 물성과 응용)

  • Seo, Ho Seong;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.43-48
    • /
    • 2015
  • Deep eutectic solvents (DESs) are now broadly understood as a new kind of ionic liquid (IL) because they exhibit many characteristics and properties similar with ILs. The DESs made of quaternary ammonium salt blended with one of hydrogen bonding donor (HBD) compounds behave as ILs even at very low temperature. In this study, properties such as density, viscosity, surface tension, conductivity, and electrochemical behavior of DESs were reported and their applications were reviewed. Study on DESs has been drawn attention on application in metal finishing, but these solvents can be used in a variety of synthesis, and their potentials have been demonstrated in various areas. DESs are expected to offer applicability by extending the types of salts and hydrogen bond donor mixtures.