• Title/Summary/Keyword: bonding temperature

Search Result 1,060, Processing Time 0.034 seconds

Effect of substrate bias voltage on a-C:H film (기판 bias 전압이 a-C:H 박막의 특성에 미치는 영향)

  • 유영조;김효근;장홍규;오재석;김근식
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.348-353
    • /
    • 1997
  • Hydrogenated amorphous carbon(a-C:H) films were deposited on p-type Si(100) by DC saddle-field plasma enhanced CVD to investigate the effect of substrate bias on optical properties and structural changes. They were deposited using pure methane gas at a wide range of substrate bias at room temperature and 90 mtorr. The substrate bias voltage ($V_s$) was employed from $V_s=0 V$ to $V_s=400 V$. The information of optical properties was investigated by photoluminescence and transmitance. Chemical bondings of a-C:H have been explored from FT-IR and Raman spectroscopy. The thickness and relative hydrogen content of the films were measured by Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) technigue. The growth rate of a-C:H film was decreased with the increase of $V_s$, but the hydrogen content of the film was increased with the increase of $V_s$. The a-C:H films deposited at the lowest $V_s$ contain the smallest amount of hydrogen with most of C-H bonds in the of $CH_2$ configuration, whereas the films produced at higher $V_s$ reveal dominant the $CH_3$ bonding structure. The emission of white photoluminescence from the films were observed even with naked eyes at room temperature and the PL intensity of the film has the maximum value at $V_s$=200 V. With $V_s$ lower than 200 V, the PL intensity of the film increased with V, but for V, higher than 200 V, the PL intensity decreased with the increase of $V_s$. The peak energy of the PL spectra slightly shifted to the higher energy with the increase of $V_s$. The optical bandgap of the film, determined by optical transmittance, was increased from 1.5 eV at $V_s$=0V to 2.3 eV at $V_s$=400 V. But there were no obvious relations between the PL peak and the optical gap which were measured by Tauc process.

  • PDF

Strength Development of Sulfur-Polymer-Based Concrete Surface Protecting Agents Depending on Curing Condition and Hazard Assessment of Sulfur Polymers (유황폴리머를 활용한 콘크리트 표면보호재의 양생조건에 따른 강도 평가 및 유황폴리머의 유해성 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Kim, Seung-Gu;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • The amount of by-product from sulphur increases in domestic industrial facilities. However, the amount of its consumption is limited so that the amount of unused sulphur continues to increase. Therefore, in this study, the use sulfur polymer as the concrete surface protecting material was conducted. The compressive strength showed that as the substitution ratio of filler increased up to 40%, the compressive strength also increased. A high compressive strength was shown at the curing temperature of $40^{\circ}C$ (SS, FA) and $60^{\circ}C$ (OPC) according to the type of filler. The difference of compressive strength between air dry curing and water curing was insignificant so that there was no significant influence of moisture during curing process. The evaluation result of bond strength showed that the highest bond strength was shown at the air-dry condition of $40^{\circ}C$ regardless of type of filler. Bonding didn't occur properly during water curing in comparison to air dry curing. Also, in case of the specimen cured at $60^{\circ}C$, discoloration and hair cracks appeared due to the influence of temperature, and the highest bond strength was shown at the substitution ratio of 20% (SS, FA) and 30% (OPC) according to the type of filler. The releasing test result of harmful substance showed that no harmful substance was released, so there is no harmfulness in the surface protecting material using sulfur polymer. As a conclusion drawn in this study, it is most appropriate to substitute silica by approximately 20%, mix and cure at the air-dry condition of $40^{\circ}C$ in order to use sulfur polymer as the surface protecting material.

Thermodynamic Properties for the Chemical Reactions of [Cu(dl-trans-[14]-diene)]$^{2+}$ with S$_2O_3^{2-},\;SCN^-,\;I^-\;and\;NO_2^-$ ([Cu(dl-trans-[14]-diene)]$^{2+}$ 착이온과 음이온 (S$_2O_3^{2-},\;SCN^-,\;I^-$ 및 NO$_2^-$)간의 화학반응에 대한 열역학적 성질 (${\Delta}G;\;{\Delta}H;\;{\Delta}V$))

  • Yu Chul Park;Jong Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 1985
  • The equilibria of chemical reaction between [Cu(dl-trans-[14]-diene)]$^{2+}$ and L$^{n-}$(S$_2$O$_3^{2-}$, SCN$^-$, I$^-$, NO$_2^-$) ions were studied by the spectrophotometric method in the range of 15 to 35$^{\circ}C$ and 1 to 1500bar. The equilibrium constants(K) for L$^{n-}$ = S$_2$O$_3^{2-}$, SCN$^-$, I$^-$ and NO$_2^-$ ions at 25$^{\circ}C$ and 1500bar were 3.0, 1.9, 0.6 and 0.5, respectively. The values of K decreased with increasing pressure and temperature. From the temperature effect on equlibrium constant, the thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$) of reaction were evaluated and the reactions of [Cu(dl-trans-[14]-diene)]2+ ion with S$_2$O$_3^{2-}$, SCN$^-$ and I$^-$ except NO$_2^-$ ion were exothermic. The volume changes of reaction(${\Delta}$V) had positive values for all the used anions. The values of ${\Delta}$V in cm$^3$/mole for S$_2$O$_3^{2-}$ ion at 1,500, 1,000 and 1,500bar were 26, 22, 19 and 16, and those for S$_2$O$_3^{2-}$, SCN$^-$, I$^-$ and NO$_2^-$ ions at atmospheric pressure 26, 30, 64 and 45, respectively. Bonding character between Cu(Ⅱ)-complex ion and L$^{n-}$ was discussed by comparing both the equlibrium constants experimentally determined and those calculated according to Fuoss's ion-pair equation in case of S$_2$O$_3^{2-}$ ion.

  • PDF

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

Influence of application methods of one-step self-etching adhesives on microtensile bond strength (한 단계 자가 산부식 접착제의 적용 방식이 미세인장 결합강도에 미치는 효과)

  • Choi, Chul-Kyu;Son, Sung-Ae;Ha, Jin-Hee;Hur, Bock;Kim, Hyeon-Cheol;Kwon, Yong-Hun;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods: Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15), according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond) and application methods. The adhesive systems were applied on the dentin as follows: 1) The single coating, 2) The double coating, 3) Manual agitation, 4) Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results: Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions: In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.

Miscibility and Specific Intermolecular Interaction Strength of PBI/PI Blends Depending on Polyimide Structure(II) - Blend Systems with PIs Synthesized by DSDA - (폴리이미드 구조변화에 의한 방향족 PBI/PI 블렌드의 상용성 및 상호작용의 세기(II) - DSDA로 합성한 PI들과의 블랜드들 -)

  • Ahn, Tae-Kwang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-213
    • /
    • 1998
  • On the basis of the previous study[1], miscibility were investigated and intermolecular interaction strength for the miscibility were relatively compared for the blends poly{2,2-(m-phenylene)-5,5'-bibenzimidazole}(PBI) with two aromatic polyimides (PIs) synthesized by another dianhydride. Aromatic PAAs were prepared by the reaction of condensation of two diamines, 4,4'-methylene dianiline(4,4'-MDA) and 4,4'-oxydianiline(4,4'-ODA) with 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride(DSDA) using DMAc, and then converted into PIs after curing. PBI/PAA blends were prepared by solution blending. Cast films or precipitated powders of the PBI/PAA blends were cared at a high temperature to transform into PBI/PIs blends. Miscibility and specific intermolecular interaction for miscibility in the blends were investigated, and compared with previous polyimide structures of PBI/PIs blends [1]. Two blends, PBI/DSDA+4,4'-MDA(Blend-V) and PBI/DSDA+4,4'-ODA(Blend-VI), were found miscible : the evidences were optically clear films, synergistic single composition dependent $T_g{\prime}s$, and frequency shifts of N-H stretching band as much as $39{\sim}40cm^{-1}$, and of C=O stretching band near 1730 and $1780cm^{-1}$, 5~6 and $3{\sim}4cm^{-1}$, respectively. The specific intermolecular interactions existing between PBI and PIs were relatively analyzed with the area(A) formed between the $T_g{\prime}s$ of the measured and that of the calculated by the Fox equation at all compositions, the ${\kappa}$ values in Gordon-Taylor equation obtained from the measured $T_g{\prime}s$, and differences of the frequency shifts in the functional N-H and carbonyl stretching band. From the results, the area(A) and the ${\kappa}$ values for Blend-V and VI were smaller than those for Blend-III and IV used in previous study[1]. Differences of the frequency shifts in the functional groups(N-H and C=O) also showed similar tendency. Thus, specific intermolecular interaction strength in terms of hydrogen bonding of PBI/PI blends is dependent upon chemical structures of PIs, that is, PIs it seems that $SO_2$ group in dianhydride(DSDA) has weaker hydrogen bond strength than those of C=O in BTDA. In other words, it implies that the former occupied bulk space than the latter due to the sterric effect.

  • PDF

Immobilization of Xylose Isomerase and Trial Production of High Fructose Corn Syrup (Xylose 이성화 효소의 고정화 및 이성화당의 생산)

  • Chun, Moon-Jin;Lim, Bun-Sam
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.222-230
    • /
    • 1983
  • This study was designed to develop a process for the immobilization of xylose isomerase(D-xylose ketol isomerase, EC 5.3.1.5) from Streptomyces griseolus previously isolated by the authors and its application on a pilot plant scale for the production of high fructose corn syrup. The biomass which has endo-excreted xylose isomerase was homogenized under a pressure of $500kg/cm^2$ and 90.8% of the enzyme recovery of the native activity was obtained as compared to 54.7% recovery by the lysozyme treatment. Ionic bonding method was adopted for the enzyme immobilization due to its many reported merits. It was found that the porous resins such as Diaion HP 20, Duolite A-7, Amberlite IRA 93 and 94 were effective in immobilizing the enzyme. In addition, it was disclosed that the regeneration form of $BO_4--$ is effective for Amberlite IRA 93 and $HCO_3-$ for Diaion HP 20. Optimal immobilization condition for Amberlite IRA 93 was pH 8.0 and $55^{\circ}C$ yielding 80.6% of immobilization. Activity decay test showed half life of the immobilized enzyme with Amberlite IRA 93 was more than 24 days at $65^{\circ}C$. The carrier was evaluated to be resuable and its result showed the relative immobilization yields were 98.2, 93.3, 90.7 and 87.5%, respectively at second, third, forth and fifth rebinding test of the enzyme on Amberlite IRA 93. Optimal temperature of the immobilized enzyme was slightly lowered and the range widened to $60\sim70^{\circ}C$, while optimal pH moved toward $8.0\sim8.3$ in its isomerization reaction. The trial production result of high fructose corn syrup in pilot scale immobilization showed that one liter of immobilized xylose isomerase (350 IXIU/ml-R) is capable producing about 293l high fructose corn syrup(75% dry substance) in 30 days.

  • PDF

EFFECT OF ULTRASONIC VIBRATION ON ENAMEL AND DENTIN BOND STRENGTH AND RESIN INFILTRATION IN ALL-IN-ONE ADHESIVE SYSTEMS (All-in-one 접착제에서 초음파진동이 법랑질과 상아질의 결합강도와 레진침투에 미치는 영향)

  • Lee, Bum-Eui;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.66-78
    • /
    • 2004
  • The objective of this study was to apply the vibration technique to reduce the viscosity of bonding adhesives and thereby compare the bond strength and resin penetration in enamel and dentin achieved with those gained using the conventional technique and vibration technique. For enamel specimens, thirty teeth were sectioned mesio-distally. Sectioned two parts were assigned to same adhesive system but different treatment(vibration vs. non-vibration). Each specimen was embedded in 1-inch inner diameter PVC pipe with a acrylic resin. The buccal and lingual surfaces were placed so that the tooth and the embedding medium were at the same level. The samples were subsequently polished silicon carbide abrasive papers. Each adhesive system was applied according to its manufacture's instruction. Vibration groups were additionally vibrated for 15 seconds before curing. For dentin specimen, except removing the coronal part and placing occlusal surface at the mold level, the remaining procedures were same as enamel specimen. Resin composite(Z250. 3M. U.S.A.) was condensed on to the prepared surface in two increments using a mold kit(Ultradent Inc., U.S.A.). Each increments was light cured for 40 seconds. After 24 hours in tap water at room temperature, the specimens were thermocycled for 1000cycles. Shear bond strengths were measured with a universal testing machine(Instron 4465, England). To investigate infiltration patterns of adhesive materials, the surface of specimens was examined with scanning electron microscope. The results were as follows: 1. In enamel the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration group(group 1, 3, 5). The differences were statistically significant except AQ bond group. 2. In dentin, the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration groups(group 1, 3, 5). But the differences were not statistically significant except One-Up Bond F group. 3. The vibration group showed more mineral loss in enamel and longer resin tag and greater number of lateral branches in dentin under SEM examination.

  • PDF

Adsorption Removal of Sr by Barium Impregnated 4A Zeolite (BaA) From High Radioactive Seawater Waste (Barium이 함침된 4A 제올라이트 (BaA)에 의한 고방사성해수폐액에서 Sr의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.101-112
    • /
    • 2016
  • This study investigated the removal of Sr, which was one of the high radioactive nuclides, by adsorption with Barium (Ba) impregnated 4A zeolite (BaA) from high-radioactive seawater waste (HSW). Adsorption of Sr by BaA (BaA-Sr), in the impregnated Ba concentration of above 20.2wt%, was decreased by increasing the impregnated Ba concentration, and the impregnated Ba concentration was suitable at 20.2wt%. The BaA-Sr adsorption was added to the co-precipitation of Sr with $BaSO_4$ precipitation in the adsorption of Sr by 4A (4A-Sr) within BaA. Thus, it was possible to remove Sr more than 99% at m/V (adsorbent weight/solution volume)=5 g/L for BaA and m/V >20 g/L for 4A, respectively, in the Sr concentration of less than 0.2 mg/L (actual concentration level of Sr in HSW). It shows that BaA-Sr adsorption is better than 4A-Sr adsorption in for the removal capacity of Sr per unit gram of adsorbent, and the reduction of the secondary solid waste generation (spent adsorbent etc.). Also, BaA-Sr adsorption was more excellent removal capacity of Sr in the seawater waste than distilled water. Therefore, it seems to be effective for the direct removal of Sr from HSW. On the other hand, the adsorption of Cs by BaA (BaA-Cs) was mainly performed by 4A within BaA. Accordingly, it seems to be little effect of impregnated Ba into BaA. Meanwhile, BaA-Sr adsorption kinetics could be expressed the pseudo-second order rate equation. By increasing the initial Sr concentrations and the ratios of V/m, the adsorption rate constants ($k_2$) were decreased, but the equilibrium adsorption capacities ($q_e$) were increasing. However, with increasing the temperature of solution, $k_2$ was conversely increased, and $q_e$ was decreased. The activation energy of BaA-Sr adsorption was 38 kJ/mol. Thus, the chemical adsorption seems to be dominant rather than physical adsorption, although it is not a chemisorption with strong bonding form.

MEASUREMENT OF ADHESION OF ROOT CANAL SEALER TO DENTINE AND GUTTA-PERCHA (상아질과 Gutta-Percha에 대한 근관충전용 Sealer의 결합강도의 측정)

  • Her, Mi-Ja;Yu, Mi-Kyung;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.89-99
    • /
    • 2003
  • The purpose of this study was to investigate the bonding of resin- based root canal sealer, AH26 when the sealer was applied as a thin layer between dentine and gutta-percha surface. In this study forty non-caries extracted human molars and resin-based root canal sealer(AH 26, DeTrey/Dentsply, Germany) were used. Disks of gutta-percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for thermoplastic obturation were used and dentin surfaces were treated with 2% NaOCl(Group 1) or 2%NaOCl+17% EDTA(Group 3). Disks of gutta-Percha, 6mm in diameter.6mm thick (Diadent/Dentsply, Korea) for conventional obturation were used and dentin surface were treated with 2% NaOCl(Group 2) or 2%NaOCl+17% EDTA(Group 4). Enamel was removed by a horizontal section 1mm below the deepest portion of the central occlusal groove by using a watercooled low speed diamond saw. A second horizontal section was done around cementoenamel junction. Exposed dentin surface was cut to approximately $8{\times}8{\;}mm$ rectangular shape and was ground against 320, 400, 600 grade silicon carbide abrasive paper serially. After grinding, the dentine surface were soaked in a solution of 2% NaOCl for 30 minutes and twenty of specimens were treated with 17% EDTA solution for 1 minute. The treated specimens were washed and dried, Root canal sealer, AH26 was prepared according to the manufacture's instructions The Gutta-percha and dentin surface were coated with a thin layer of the freshly mixed seal or. The specimens were left overnight at room temperature. After their initial set, they were transferred to an incubator at $37$^{\circ}C$ for 72 h. After 72 hours, resin blocks were made. The resin block was serially sectioned vertically into stick of $1{\cdot}1mm$. Twenty sticks were prepared from each group. After that, tensile bond strength f3r each stick was measured with Microtensile Tester Failure patterns of the specimens at the interface between gutta-percha and dentin were observed under the SEM(x1000) and Stereomicroscope (LEICA M42O, Meyer Inst., TX U.S.A) at 1.25 x25 magnification. The results were statistically analysed by using a One-way ANOVA and Tukey's test. The results were as follows; 1. Tensile bond strengths($mean{\pm}SD$) were expressed with ascending order as follows: Group 1, $3.09{\pm}$ 1.05Mpa : Group 2, $6.23{\pm}1.16MPa$ : Group 3, $7.12{\pm}1.07MPa$ : Group 4, $10.32{\pm}2.06MPa$. 2. Tensile bond strengths of the group 2 and 4 used disks of gutta-percha for conventional obturation were significantly higher than that of the group 1 and 3 used fir thermoplastic obturation. (p < 0.05). 3. Tensile bond strengths of the group 3 and 4 treated with 2% NaOC1+17% EDTA were significantly higher than that of the group 1 and 2 treated with 2% NaOCl. (p < 0.05). 4. In analysis of failure patterns at the interface between sealer and gutta-percha, there were observed 49 (61%)cases of adhesive failure patterns and 31 (39%) cases of mixed failures patterns.