• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.022 seconds

Parasitic Capacitance Analysis with TSV Design Factors (TSV 디자인 요인에 따른 기생 커패시턴스 분석)

  • Seo, Seong-Won;Park, Jung-Rae;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.45-49
    • /
    • 2022
  • Through Silicon Via (TSV) is a technology that interconnects chips through silicon vias. TSV technology can achieve shorter distance compared to wire bonding technology with excellent electrical characteristics. Due to this characteristic, it is currently being used in many fields that needs faster communication speed such as memory field. However, there is performance degradation issue on TSV technology due to the parasitic capacitance. To deal with this problem, in this study, the parasitic capacitance with TSV design factors is analyzed using commercial tool. TSV design factors were set in three categories: size, aspect ratio, pitch. Each factor was set by dividing the range with TSV used for memory and package. Ansys electronics desktop 2021 R2.2 Q3D was used for the simulation to acquire parasitic capacitance data. DOE analysis was performed based on the reaction surface method. As a result of the simulation, the most affected factors by the parasitic capacitance appeared in the order of size, pitch and aspect ratio. In the case of memory, each element interacted, and in the case of package, it was confirmed that size * pitch and size * aspect ratio interact, but pitch * aspect ratio does not interact.

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Direct Bonding of Si(100)/NiSi/Si(100) Wafer Pairs Using Nickel Silicides with Silicidation Temperature (열처리 온도에 따른 니켈실리사이드 실리콘 기판쌍의 직접접합)

  • Song, O-Seong;An, Yeong-Suk;Lee, Yeong-Min;Yang, Cheol-Ung
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.556-561
    • /
    • 2001
  • We prepared a new a SOS(silicon-on-silicide) wafer pair which is consisted of Si(100)/1000$\AA$-NiSi Si (100) layers. SOS can be employed in MEMS(micro- electronic-mechanical system) application due to low resistance of the NiSi layer. A thermally evaporated $1000\AA$-thick Ni/Si wafer and a clean Si wafer were pre-mated in the class 100 clean room, then annealed at $300~900^{\circ}C$ for 15hrs to induce silicidation reaction. SOS wafer pairs were investigated by a IR camera to measure bonded area and probed by a SEM(scanning electron microscope) and TEM(transmission electron microscope) to observe cross-sectional view of Si/NiSi. IR camera observation showed that the annealed SOS wafer pairs have over 52% bonded area in all temperature region except silicidation phase transition temperature. By probing cross-sectional view with SEM of magnification of 30,000, we found that $1000\AA$-thick uniform NiSi layer was formed at the center area of bonded wafers without void defects. However we observed debonded area at the edge area of wafers. Through TEM observation, we found that $10-20\AA$ thick amourphous layer formed between Si surface and NiSix near the counter part of SOS. This layer may be an oxide layer and lead to degradation of bonding. At the edge area of wafers, that amorphous layer was formed even to thickness of $1500\AA$ during annealing. Therefore, to increase bonding area of Si NiSi ∥ Si wafer pairs, we may lessen the amorphous layers.

  • PDF

THE SHEAR BOND STRENGTH OF DENTAL ADHESIVES ON PRIMARY AND PERMANENT TEETH (유치와 영구치에서 치과용 접착제의 전단결합강도)

  • Choi, Jin-Young;Choi, Nam-Ki;Park, Yeong-Joon;Choi, Choong-Ho;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.579-589
    • /
    • 2007
  • The objective of this study was to compare the shear bond strengths of five adhesive systems to the enamel and dentin of primary and permanent teeth. Fifty noncarious primary and fifty permanent teeth were collected and stored in an 0.1% thymol solution at room temperature after extraction. The tested adhesives were: Adper Scotchbond Multi-purpose Plus Adhesive (SM) Adper Single bond 2 (SB), Clearfil SE Bond (SE), Adper Prompt L-Pop (PL), GBond (GB). For the shear bonding test, the labial and lingual surfaces of primary and permanent teeth were used. To obtain a flat surface, the labial and lingual surfaces of the teeth were sanded on $SiO_2$ with number 600 grit and then divided into 20 groups of 10 surfaces each. All samples were theromocycled in water $5^{\circ}C$ and $55^{\circ}C$ for 1000 cycles. The results were as follows: 1. For primary enamel, shear bond strengths of SM and SB were significantly higher than that of SE and also SM, SB, and PL were higher than GB(p<0.05). 2. For primary dentin, there were no significant differences among the shear bond strengths of any other bonding systems except difference between SE and GB. 3. For permanent enamel, SB showed significantly higher mean shear bond strength than those of any other bonding systems(p<0.05). 4. For permanent dentin, SM showed significantly higher mean shear bond strength than that of PL and GB(p<0.05). 5. Between the primary enamel and dentin, there were significant differences in SM, SB, and GB, whereas there was statistically significant difference in PL between the permanent enamel and dentin(p<0.05). 6. Between the primary and permanent teeth on enamel, there were no significant differences among all bonding systems, whereas there were statistically significant differences in SM and SB between the primary and permanent teeth on dentin(p<0.05).

  • PDF

A STUDY ON THE BONDING OF COMPOMER TO DECIDUOUS DENTIN (컴포머와 유치 상아질의 결합에 관한 연구)

  • Kim, Jee-Tae;Kim, Yong-Kee;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • The purpose of this study was to evaluate the bonding of compomer to deciduous dentin which is known to have been developed to improve the weak properties of glass ionomer cement and composite resin. 120 sound primary molars were used for the shear bond strength test and another 24 for the scanning electron microscopic evaluation. Each material was ailed into polyethylene mold attached to exposed dentinal surface($3{\times}4mm$ in diameter) of sample blocks. Shearbond strength was measured using Universal testing machine and data were analyzed statistically with Oneway-ANOVA and Scheffe test. Scanning electron microscopic observation was performed in order to evaluate the pattern of distribution and penetration of resin tags and hybrid layer. Compomer groups(II-V) showed significantly higher bond strength values than glass ionomer group(I)(p<.05). Etching-compomer groups(III, V) showed the significantly higher bond strength than non-etching compomer groups(II, IV)(p<.05), but slightly lower values than composite resin group(VI) with no statistically significant difference(p>.05). No significantly different bond strength was found between compomer groups of different bonding system(p>.05). Scanning electron micrographs showed more irregular distribution of short and thin resin tags in non-etching compomer groups(II, IV) whereas the more regular and intimate distribution of long and thick tags in etching compomer groups(III, V) and composite resin group(VI). The evaluation of hybrid layer also showed more regular formation of thicker layer in etching compomer groups(III, V). Based on the results of present study, the use of compomer as an esthetic restorative material for primary molars might be justified.

  • PDF

THE EFFECTS OF DRYING AGENTS AND BONDING AGENTS ON THE SHEAR BOND STRENGTH OF SEALANTS TO ENAMEL (치면건조제와 접착제의 사용에 따른 치면열구전색재의 전단결합강도에 관한 연구)

  • Lim, Hyun-Hwa;Jang, Ki-Taek;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.196-203
    • /
    • 2003
  • The application of sealants is a highly technique-sensitive procedure, requiring an extremely dry field prior to placement. Moisture contamination of the etched enamel surface before sealant placement is cited as the main reason for sealant failure. The purpose of this study was to evaluate the effects of different methods of sealant application on the shear bond strength of sealants to enamel. In groups 1, 2, 3, 4 Teethmate(unfilled sealant) was used, while Ultraseal XTplus(filled sealant) was used in groups 5, 6, 7, 8. Groups 1 and 5(control) were acid etched for 15 seconds using 35% phosphoric acid, washed and then dried. In groups 2, 6 drying agents were applied, and in groups 3, 7 bonding agents were applied and light cured. In groups 4 and 8 both drying agent and bonding agent were applied. Then sealant was cured to the specimen using molds 3mm in diameter and 2mm in height. Thermocycling was performed and shear bond strength was finally measured. The following results were obtained : 1. Groups using filled sealant(groups 5, 6, 7, 8) showed higher shear bond strengths compared to groups using unfilled sealant(groups 1, 2, 3, 4). 2. Among groups using unfilled sealant(groups 1, 2, 3, 4), groups 2, 3, 4 showed significantly higher shear bond strength compared to group 1(p<0.05). There were no significant differences among groups 2, 3 and 4. 3. There were no significant differences(p>0.05) among groups using filled sealant(groups 5, 6, 7, 8). 4. When modes of fracture were examined, cohesive failure was observed in groups 2, 3 and 4.

  • PDF

EFFECTS OF MOISTENING OF ETCHED DENTIN AND ENAMEL SURFACES ON BOND STRENGTH (산 표면처리후 상아질과 법랑질 표면의 습윤이 결합강도에 미치는 영향)

  • Lee, Kwang-Won;Park, Soo-Joung;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.328-341
    • /
    • 1995
  • I. Shear Bond Strength to Air-dried and Remoistened Dentin.. The effect of air-drying and remoistening of acid-conditioned dentin before priming with the primer of All-Bond 2(BISCO. INC., U. S. A.) on shear bond strength(SBS) was investigated. Ninty freshly extracted sound human molars were divided at random into 9 groups of 10 teeth each. SBSs were meaured for acid-conditioned and non-conditioned dentin to which the primer and bonding agent of All-Bond 2 and composite resin(Z-100, 3M Dental Products, U. S. A.) were applied. The following values(Mean${\pm}$ SD, MPa) were obtained for the groups conditioned with 10% phosphoric acid for 15 seconds: Group l(blot dried) $6.7{\pm}4.1$ ; Group 2(10 seconds dried) $16.1{\pm}5.3$ ; Group 3(20 seconds dried) $15.4{\pm}4.8$ ; Group 4(30 seconds dried) $15.2{\pm}6.3$ ; Group 5(10 seconds dried/remoistened) $26.4{\pm}2.6$ ; Group 6(20 seconds dired/remositened) $22.2{\pm}2.7$ ; Group 7(30 seconds dried/remoistened) $21.5{\pm}4.1$. For the non-conditioned groups the values were: Group 8 (blot dried) $13.3{\pm}2.6$ ; Group 9(10 seconds dried) $12.9{\pm}3.5$. The data were analyzed using ANOVA. In the acid-conditioned groups, mean values of SBS for the air-dried specimens(Grps. 2, 3 and 4) and the 20 and 30 seconds dried/remoistened specimens (Grps. 6 and 7) were significantly lower than that of blot dried specimens.(p<0.05) The value for 10 seconds dried/remoistened specimens (Grp. 5), however, was not statistically different compared to that of blot dried specimens.(p>0.05) In the non-conditined groups, there was no statistical difference between blot dried and 10 seconds dried specimens.(p>0.05) The results suggest that the acid-conditioned dentin surface is more vulnerable to dentin bonding when it is air-dried or even remoistened after long period of drying. II. Shear bond stengh to the moistened and primed enamel. The effect of moistening and priming of enamel compared to the air-drying of enamel on the shear bond strength of enamel bonding agent was investigated. The experiment was divided into 4 groups each containing 10 caries-free maxillary incisor teeth. Shear bond strength values were measured for the primed and non-primed enamel to which All-Bond 2 and Z-100 were applied. The following values(MPa) were obtained for the primed groups pretreated with 32 % phosphoric acid for 15 seconds. : Group 1 (10 seconds dried) $29.8{\pm}2.2$ ; Group 2(moistened) $26.8{\pm}5.4$. For the non-primed groups the values were: Group 3(10 seconds dried/primed) $27.6{\pm}5.0$ ; Group 4(mostened/primed) $28.2{\pm}3.5$. The data were subjected to statistical analysis using ANOVA. The results showed that mean shear bond strengths among the experimental groups were not statistically different. (p>0.05) Conclusively, It is suggested that the bonding ability to enamel is not decreased by the moistening and priming of the enamel.

  • PDF

Effect of Er:YAG lasing on the dentin bonding strength of two-step adhesives (2단계 접착제의 상아질 결합강도에 대한 Er:YAG 레이저 조사 영향)

  • Song, Byeong-Choon;Cho, Young-Gon;Lee, Myung-Seon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.409-418
    • /
    • 2011
  • Objectives: The purpose of this study was to compare the microshear bond strength (${\mu}$SBS) and bonding interfaces of two-step total-etching and self-etching adhesive systems to three etch types of dentin either the acid etched, laser etched or laser and acid etched. Materials and Methods: The occlusal dentinal surfaces of thirty human molars were used. They were divided into six groups: group 1, 37% $H_3PO_4$ + Single Bond 2 (3M ESPE); group 2, Er:YAG laser (KEY Laser 3, KaVo) + Single Bond 2; group 3, Er:YAG laser + 37% $H_3PO_4$ + Single Bond 2; group 4, Clearfil SE Primer + Bond (Kuraray); group 5, Er:YAG laser + Clearfil SE Bond; group 6, Er:YAG laser + Clearfil SE Primer + Bond. The samples were subjected to ${\mu}$SBS testing 24 hr after bonding. Also scanning microscopic evaluations were made on the resin-dentin interfaces of six specimens. Results: The ${\mu}$SBS of group 2 was significantly lower than that of groups 1 and 3 in Single Bond 2 (p < 0.05). There were significant differences among the uSBS of groups 4, 5, and 6 in Clearfil SE Bond (p < 0.05). Very short and slender resin tags were observed in groups 2 and 5. Long and slender resin tags and lateral branches of tags were observed in groups 3 and 6. Conclusions: Treatment of dentin surface using phosphoric acid or self-etching primer improved the adhesion of Er:YAG lased dentin.

Effect of universal primer on shear bond strength between resin cement and restorative materials (다용도 프라이머가 레진 시멘트와 수복재의 전단 결합 강도에 미치는 영향)

  • Kim, Na-Hong;Shim, June-Sung;Moon, Hong-Suk;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.112-118
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the difference in shear bonding strength between resin cements to dental materials when a universal primer (Monobond plus) was applied in place of a conventional primer. Materials and methods: Four groups of testing materials: gold alloy (Argedent Euro, n = 16), non precious metal (T-4, n = 20), zirconia (Cercon, n = 20) and glass ceramic (IPS e.max press, n = 20), were fabricated into discs, which were embedded in an acrylic resin matrix. The gold alloy specimens were airborne-particle abraded, 8 of the specimens were coated with Metal primer II, while the remaining 8 specimens were coated with Monobond plus. The non precious and zirconia specimen were airborne-particle abraded then, the control group received Alloy primer coating, while the other was coated with Monobond plus. Glass ceramic specimens were etched. 10 specimens were coated with Monobond-S and the remaining specimens were coated using Monobond plus. On top of the surface, Multilink N was polymerized in a disc shape. All of the specimens were thermal cycled before the shear bonding strength was measured. Statistical analysis was done with Two sample $t$-test or Mann-Whitney U test (${\alpha}$=.05). Results: There were no significant differences in bonding strength depending on the type of primer used in the gold alloy and glass ceramic groups ($P$>.05), however, the bonding strengths of resin cements to non precious metal and zirconia groups, were significantly higher when the alloy primer was used ($P$<.05). Conclusion: Within the limitations of this study, improvement of universal primers which can be applied to all types of restorations is recommended to precious metals and zirconia ceramics. But, the bond strengths of non precious metals and zirconia ceramics were significantly lower when compared to a 10-MDP primer. More research is needed to apply universal primers to all types of restorations.