• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.026 seconds

A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite

  • Wei, Xinyu;Wang, Zhi;Wang, Jixiao;Wang, Shichang
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • In membrane processes, various agents are used to enhance, protect, and recover membrane performance. Applying these agents in membrane modification could potentially be considered as a simple method to improve membrane performance without additional process. Citric acid (CI) and sodium bisulfite (SB) are two chemicals that are widely used in membrane feed water pretreatment and cleaning processes. In this work, preadsorptions of CI and SB were developed as simple methods for polysulfone ultrafiltration membrane modification. It was found that hydrogen bonding and Van Der Waals attraction could be responsible for the adsorptions of CI and SB onto membranes, respectively. After modification with CI or SB, the membrane surfaces became more hydrophilic. Membrane permeability improved when modified by SB while decreased a little when modified by CI. The modified membranes had an increase in PEG and BSA rejections and better antifouling properties with higher flux recovery ratios during filtration of a complex pharmaceutical wastewater. Moreover, membrane chlorine tolerance was elevated after modification with either agent, as shown by the mechanical property measurements.

The Heat Transfer and Pressure Drop Characteristics on Microchannel PCHE with various Configurations (채널 형상에 따른 마이크로채널 PCHE의 열전달 및 압력강하 특성)

  • Kim, Yoon-Ho;Moon, Jung-Eun;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.215-220
    • /
    • 2008
  • A microchannel PCHE is manufactured by the two technologies of micro photo-etching and diffusion bonding. In this paper, heat transfer and pressure drop characteristics by applying various configuration for the flow channel in the microchannel PCHE is experimentally investigated. The flow channel configurations are designed three types such as straight, wavy and offset strip channels. The performance experiment of each configuration is performed for Reynolds numbers in ranges of $100{\sim}700$ under various flow conditions for the hot side and the Reynolds number of cold side is fixed at 350. The inlet temperatures of the hot side and cold side are conducted as $40^{\circ}C$ and $20^{\circ}C$, respectively. The heat transfer performance of wavy channel, which was similar to that of offset strip channel, was much higher than that of straight channel. The effectiveness of wavy channel and offset strip channel was evaluated as about $0.5{\sim}0.9$. The pressure drop of wavy channel was highest among configurations and that of offset strip channel was lower than that of straight channel because the round curved surface of each strip edge was reduced the pressure loss.

  • PDF

Fluoride penetration from three orthodontic adhesives: an experimental study

  • Wagner, Leopold;Szepietowska, Magdalena
    • The korean journal of orthodontics
    • /
    • v.43 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • Objective: To examine the prophylactic potential of 3 orthodontic bonding adhesives: Fuji Ortho SC, Illuminate, and Resilience. Methods: Thirty-six Wistar Wag rats were randomly divided into 4 groups consisting of 9 rats each. One of the groups received no treatment and was used as a control. In the other groups, individual bands coated with one of the 3 adhesives were cemented to the lower incisors. Enamel samples were obtained after 6 and 12 weeks and analyzed using scanning electron microscopy in combination with energy dispersive spectrometry. Results: Six weeks after band cementation, no fluoride was found in the enamel of the lower incisors. After 12 weeks, there was no fluoride in the enamel of teeth coated with the Resilience composite. However, in the case of the Illuminate composite and the resin-modified glass ionomer Fuji Ortho SC cement, the depth of fluoride penetration reached $2{\mu}m$ and $4.8-5.7{\mu}m$, respectively. Conclusions: Fluoride ions from orthodontic adhesives can be incorporated into the surface layer of the enamel. Orthodontists may apply orthodontic adhesives, such as the Fuji Ortho SC, to reduce the occurrence of caries during orthodontic treatment with fixed appliances.

Studies on the Chemical Treatment of Silica for Synthetic Rubber Reinforcement(I) - Silica Treatment by MDI- (합성(合成)고무 보강제(補强劑) Silica의 화학처리(化學處理)에 관(關)한 연구(硏究)(I) -Silica의 MDI 처리(處理)-)

  • Jin, Je-Yong;Kim, Hong-Seon;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.30 no.1
    • /
    • pp.20-31
    • /
    • 1995
  • The purpose of this study is to investigate the reinforcement of inorganic filler silica, treated by MDI about SBR vulcanizate. The characteristics of vulcanization, physical properties, surface properties and dynamic properties were investigated after mixing those silica with SBR and unmodified silica with SBR. In this experiment only the quantity of silica was variable. In the vulcanization characteristics tested by rheometer, S-series showed the fastest scorch $time(t_{10})$ and optimum cure $time(t_{90})$. And in test or tensile characteristics hardness, tensile strength, 100%, 300% modulus and elongation were all appeared in the order of M>S-series. The characteristic bonding of urea between unmodified silica and MDI could be confirmed in IR spectrum. The shapes of silicas treated chemically were observed by SEM. And the dispersion of the filler in the SBR composite was uniform. In the dynamic characteristics by the RDS, the order of elastic modulus G' values was as follows : M>S-series, and also the order of damping values was as follows : M>S-series.

  • PDF

Influence of Nano-Cellulose Dispersant on the Vulcanization Characteristics, Viscoelastic Properties, and Mechanical Properties of Silica-SBR Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2020
  • Silica/SBR (styrene-butadiene rubber) compounds are the primary constituents of tire treads. Furthermore, the excellent dynamic viscoelastic properties of silica lead to good fuel efficiencies. However, the silanol group on the surface of silica does not mix well with non-polar rubber because of its polarity. This incompatibility causes aggregation due to the occurrence of hydrogen bonding between the hydroxyl groups, thereby reducing the dispersibility of silica. Recently, the wet master batch (WMB) process has been applied to overcome these disadvantages, and research on silica dispersants that can be used in the WMB process has been increasing. In this study, we prepared silica/SBR compounds by using three types of eco-friendly cellulose-based dispersants in the WMB process, namely: cellulose-, sodium carboxymethyl cellulose, and nanocellulose-based dispersants. Subsequently, we compared the vulcanization characteristics, viscoelastic properties, and mechanical properties of the compounds. The silica dispersibility in the rubber compounds was improved with the addition of the nano-cellulose dispersant, resulting in the enhancement of the workability, hardness, tensile strength, and wear resistance of the SBR compound.

Effect of Hydrodemolition on Bonding Strengthof Structures Repaired or Rehabilitated with VES-LMC (VES-LMC로 보수.보강된 구조물의부착강도에 미치는 Hydrodemolition의 영향)

  • Kim, Seong-Kwon;Shim, Do-Sick;Lee, Bong-Hak;Yun, Kyung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.397-400
    • /
    • 2006
  • Most of the civil structures in Korea and abroad have many kinds of damages when they are facing over-loaded traffics, long-term serviceability, and severe environmental conditions. Repair, rehabilitation, and retrofit are important for maintaining the serviceability of structures. In recent year, VES-LMC has been widely used as repair material for bridge deck repair and rehabilitation, because the VES-LMC has a various benefits such as traffic opening after 3 hours of curing, higher durability and bond strength. In case of any structure repaired or rehabilitated with VES-LMC, those were influenced capacity of bond between the base layer of slab and VES-LMC as well as physical properties of each other materials. The capacity of bond depended on purity of interface, micro cracks, curing of VES-LMC and so like. A kind of popular concrete repair technique, High pressure water jetting equipment is extremely efficient at removing damaged concrete. Removing damaged or poor quality concrete from sensitive structures such as bridge, tunnels, multi-story car parking decks and runways, using the high pressure water jetting could remove damaged or poor quality concrete remaining healthy and sound concrete. Accordingly, the purpose of this study is that it was to evaluate effect of hydrodemolition on the bond strength of VES-LMC overlay compared with effects of other method such as breaker, untreated. Also, it was evaluated the effect of surface moisture.

  • PDF

Work Function Increase of ITO Modified by Self Assembled Monolayer for Organic Electrical Devices (유기 디스플레이 소자를 위한 Self Assembled Monolayer의 표면개질을 이용한 ITO의 일함수 증가)

  • Jee Seung-Hyun;Kim Soo-Ho;Ko Jae-Hwan;Yoon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.563-567
    • /
    • 2006
  • Indium tin oxide (ITO) used as an electrode in organic light emitting diodes (OLEDs) and organic thin film transistors (OTFTs) was modified by a self-assembled monolayer (SAM). For device fabrication, surface of the ITO was modified by immersion in a solution including various phosphonic acid at room temperature in order to increase work function of an electrode. The work function of ITO with SAM was measured by Kelvin probe. Work function increase of 0.88 eV was observed in ITO with various SAM. Therefore, ohmic contact is achieved in an interface between ITO and organic semiconductors (pentacene). We analyzed the origin of work function increase of ITO with SAM by X-ray photoelectron spectroscopy. We confirmed that increase of oxygen bonding energy attributed to increase the work function of ITO. These results suggested that ITO with the SAM gives a high possibility for high performance of OLEDS and OTFTs.

A study on etch Characteristics of CeO$_2$ thin Film in an Ar/CF/C1$_2$ Plasma (Ar/CF$_4$/Cl$_2$ 플라즈마에 의한 CeO$_2$ 박막의 식각 특성 연구)

  • 장윤성;장의구;김창일;이철인;김태형;엄준철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.217-220
    • /
    • 2001
  • The possibility of cerium dioxide (CeO$_{7}$ ) thin films as insulators of metal erroelectric insulator semiconductor (MFIS) structures have been studied. The etching CeO$_2$ thin films have been performed in an inductively coupled C1$_2$/CF$_4$/Ar plasma. The high etch rate of the CeO$_2$ thin film was 250 ${\AA}$/m at a 10% addition of Cl$_2$ into the Ar(80)/CF$_4$(20). The surface reaction of the etched CeO$_2$ thin films was investigated using X-ray photoelectron spectroscopy (XPS) analysis. There are Ce-Cl and Ce-F bonding by chemical reaction between Cl, F and Ce. These products can be removed by the physical bombardment of incident Ar ions.

  • PDF

A Study on the Etching Characteristics of $CeO_2$ Thin Films using inductively coupled $Cl_2$/Ar Plasma (유도 결합 플라즈마($Cl_2$/Ar)를 이용한 $CeO_2$ 박막의 식각 특성 연구)

  • 오창석;김창일;권광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-32
    • /
    • 2000
  • Cerium oxide thin film has been proposed as a buffer layer between the ferroelectric film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS ) structures for ferroelectric random access memory (FRAM) applications. In this study, CeO$_2$ thin films were etched with Cl$_2$/Ar gas combination in an inductively coupled plasma (ICP). The highest etch rate of CeO$_2$ film is 230 $\AA$/min at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2. This result confirms that CeO$_2$ thin film is dominantly etched by Ar ions bombardment and is assisted by chemical reaction of Cl radicals. The selectivity of CeO$_2$ to YMnO$_3$ was 1.83. As a XPS analysis, the surface of etched CeO$_2$ thin films was existed in Ce-Cl bond by chemical reaction between Ce and Cl. The results of XPS analysis were confirmed by SIMS analysis. The existence of Ce-Cl bonding was proven at 176.15 (a.m.u.).

  • PDF

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression (수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.