DOI QR코드

DOI QR Code

Influence of Nano-Cellulose Dispersant on the Vulcanization Characteristics, Viscoelastic Properties, and Mechanical Properties of Silica-SBR Compounds

  • Kim, Jung Soo (Department of Human and Culture Convergence Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Dong Hyun (Department of Human and Culture Convergence Group, Korea Institute of Industrial Technology (KITECH))
  • Received : 2020.07.17
  • Accepted : 2020.08.26
  • Published : 2020.09.30

Abstract

Silica/SBR (styrene-butadiene rubber) compounds are the primary constituents of tire treads. Furthermore, the excellent dynamic viscoelastic properties of silica lead to good fuel efficiencies. However, the silanol group on the surface of silica does not mix well with non-polar rubber because of its polarity. This incompatibility causes aggregation due to the occurrence of hydrogen bonding between the hydroxyl groups, thereby reducing the dispersibility of silica. Recently, the wet master batch (WMB) process has been applied to overcome these disadvantages, and research on silica dispersants that can be used in the WMB process has been increasing. In this study, we prepared silica/SBR compounds by using three types of eco-friendly cellulose-based dispersants in the WMB process, namely: cellulose-, sodium carboxymethyl cellulose, and nanocellulose-based dispersants. Subsequently, we compared the vulcanization characteristics, viscoelastic properties, and mechanical properties of the compounds. The silica dispersibility in the rubber compounds was improved with the addition of the nano-cellulose dispersant, resulting in the enhancement of the workability, hardness, tensile strength, and wear resistance of the SBR compound.

Keywords

References

  1. Me-Chun Li, Xin Ge, and Ur Ryong Cho, "Emulsion Grafting Vinyl Monomers onto Starch for Reinforcement of Styrene-Butadiene Rubber", Macromol. Res., 21, 519 (2013). https://doi.org/10.1007/s13233-013-1052-3
  2. J. L. Valentin, P. Posadas, A. Marcos-Fernandez, L. Ibarra, and A. Rodriguez, "Effect of a Fatty Amine on Processing and Physical Properties of SBR Compounds Filled With Silane-Silica Particles", J. Appl., 99, 3222 (2006). https://doi.org/10.1002/app.22951
  3. Z. Rigbi, "Reinforcement of rubber by carbon black", Properties of Polymers, 21 (2005).
  4. G. Santos, "Road Transport and CO2 Emissions: What are the Challenges?", Transp Policy, 59, 71 (2017). https://doi.org/10.1016/j.tranpol.2017.06.007
  5. N. Rivers and R. Wigle, "An Evaluation of Policy Options for Reducing Greenhouse Gas Emissions in the Transport Sector: The Cost-Effectiveness of Regulations Versus Emissions Pricing", Laurier Centre for Economic Research and Policy Analysis Working Papers, 107 (2018).
  6. S. Wolff, "Chemical Aspects of Rubber Reinforcement by Fillers", Rubber Chem. Technol., 69, 3 (1996). https://doi.org/10.5254/1.3538376
  7. C. M. Flanigan, L. Beyer, D. Klekamp, D. Rohweder, B. Stuck, and E. R. Terrill, "Comparative Study of Silica, Carbon Black and Novel Fillers in Tread Compounds", Rubber World, 245, 5 (2012).
  8. J. W. Ten Brinke, S. C. Debnath, L. A. Reuvekamp, and J. W. Noordermeer, "Mechanistic Aspects of The Role of Coupling Agents in Silica-Rubber Composites", Compos. Sci. Technol., 63, 8 (2003).
  9. T. Xu, Z. Jia, S. Wang, Y. Chen, Y. Luo, D. Jia, and Z. Peng, "Self-Crosslinkable Epoxidized Natural Rubber-Silica Hybrids", J. Appl., 134, 14 (2017).
  10. H. D. Luginsland, J. Frohlich, and A. Wehmeier, "Influence of Different Silanes on the Reinforcement of Silica-Filled Rubber Compounds", Rubber Chem. Technol., 75, 4 (2002).
  11. S. S. Choi, "Influence of the Silica Content on Rheological Behaviour and Cure Characteristics of Silica-Filled Styrene-Butadiene Rubber Compounds", Polym. Int., 50, 5 (2001). https://doi.org/10.1002/1097-0126(200101)50:1<5::AID-PI653>3.0.CO;2-2
  12. Y. Gui, J. Zheng, X. Ye, D. Han, M. Xi, and L. Zhang, "Preparation and Performance of Silica/SBR Masterbatches with High Silica Loading by Latex Compounding Method", Compos. Part B-Eng., 85, 130 (2016).
  13. T. Jesionowski, J. Zurawska, A. Krysztafkiewicz, M. Pokora, D. Waszak, and W. Tylus, "Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modification", Appl. Surf. Sci., 205, 212 (2003). https://doi.org/10.1016/S0169-4332(02)01090-5
  14. T. Jesionowski, F. Ciesielczyk, and A. Krysztafkiewicz, "Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media", Mater. Chem. Phys., 119, 65 (2010). https://doi.org/10.1016/j.matchemphys.2009.07.034
  15. Y. J. Xie, Callum A. S. Hill, Z. F. Xiao, H. Militz, and C. Mai, "Silane coupling agents used for natural fiber/polymer compound: A review", Compos. Part A-Appl. S, 41, 806 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005
  16. W. Kim, B. Ahn, H. Mun, E. Yu, K. Hwang, D. Kim, G. Ryu, and W. Kim, "Effect of Calcium Chloride as a Coagulant on the Properties of ESBR/Silica Wet Masterbatch Compound", Polymers, 10, 1116 (2018). https://doi.org/10.3390/polym10101116
  17. S. Prasertsri and N. Rattanasom, "Fumed and precipitated silica reinforced natural rubber compound prepared from latex system: Mechanical and dynamic properties", Polym. Test., 31, 593 (2012). https://doi.org/10.1016/j.polymertesting.2012.03.003
  18. Z. R. Chen, S. Araki, W. M. Cole, W. Hergenrother, and S. Warren. "Solution Masterbatch Process Using Fine Particle Silica for Low Hysteresis Rubber", U.S. Patent, 7,312,271 (2007).
  19. P. J. Wallen, G. C. Bowman, H. A. Colvin, C. J. Hardiman, and J. E. R. Reyna, "Processes for Making Silane, Hydrophobated Silica,Silica Masterbatch and Rubber Products", U.S. Patent, 8,357,733 (2013).
  20. K. W. Stockelhuber, A. Das, R. Jurk, and G. Heinrich, "Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber", Polymers, 51, 1954 (2010). https://doi.org/10.1016/j.polymer.2010.03.013
  21. Q. Liu, Y. Zhang, and H. Xu, "Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica" Appl Clay Sci, 42, 232 (2008). https://doi.org/10.1016/j.clay.2007.12.005
  22. C. Zhang, Z. Tang, B. Guo, and L. Zhang, "Concurrently improved dispersion and interfacial interaction in rubber/nanosilica composites via efficient hydrosilane functionalization", Compos. Sci. Technol., 169, 217 (2019). https://doi.org/10.1016/j.compscitech.2018.11.016
  23. J. Y. Lee, T. Lee, K. Kim, B. Kim, G. Kwag, J. Y. Kim, and H. J. Paik, "Poly (styrene‐r‐butadiene)‐b‐poly (poly (ethylene glycol) methyl ether methacrylate) as a silica dispersant in rubber compounds", Polym. Int., 63, 908 (2014). https://doi.org/10.1002/pi.4644
  24. Surya, I., Ismail, H., and Azura, A. R., "Alkanolamide as an accelerator, filler-dispersant and a plasticizer in silica-filled natural rubber compounds", Polym. Test, 32, 1313 (2013). https://doi.org/10.1016/j.polymertesting.2013.07.015
  25. Siddharth Butani and Sachin Mane, "Coagulation/Flocculation Process for Cationic and Anionic Dye Removal using Water Treatment Residuals", IJESC, 7, 13476 (2017).
  26. D. Dondi, A. Buttafava, C. Palamini, F. Pepori, A. Lostritto, L.Giannini, M. Nahmias, L. Conzatti, and A. Faucitano, "${\gamma}$-RadiationInduced Functional Modification of Silica and Radiation Vulcanization of SBR-Silica compound", Macromol. Symp., 301, 90 (2011). https://doi.org/10.1002/masy.201150312
  27. K. Gopalan Nair and A. Dufresne, "Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior", Biomacromolecules, 4, 657 (2003). https://doi.org/10.1021/bm020127b
  28. W. Helbert, J. Y. Cavaille, and A. Dufresne, "Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior", Polym. Compos., 17, 604 (1996). https://doi.org/10.1002/pc.10650