• Title/Summary/Keyword: bonding surface

Search Result 1,571, Processing Time 0.026 seconds

A Study on the Adhesion Performance of Solid Forming Angle at Fiber Panel in the Water Supply Facility (수처리 시설물에 적용되는 섬유패널 배면부의 입체 성형 각도에 따른 부착 성능 연구)

  • Youn, Joon-No;Park, Wan-Goo;Choi, Su-Young;Kim, Dong-Bum;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.171-172
    • /
    • 2018
  • The purpose of this study is to confirm the adhesion performance of the three - dimensional forming fiber panels by the dimensional forming angle. As a result of applying the three dimensional surface shape to the back side of the fiber panel and testing the adhesion strength by the three dimensional forming angle, it was confirmed that the bonding strength of the specimens to which the dimensional molding was applied was higher than that of the non dimensional molding. In addition, the highest adhesion strength was confirmed in a specimen having a three-dimensional forming angle of 70 °.

  • PDF

Design of Carbon-Glass Hybrid Composite Rebar by the Combined Pultrusion and Winding (풀트루젼과 와인딩 기법을 혼합한 탄소-유리 하이브리드 복합재 보강근 설계)

  • Kweon Jin-Hwe;Choi Soo-Young;Choi Jin-Ho;Lee Sang-Gwan;Park Young-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.9-12
    • /
    • 2004
  • Presented is a preliminary design concept of the carbon-glass hybrid composite rebars for the application in the construction field. A glass fiber rod with indentation is used for the core of the rebar. Carbon fibers are placed over the glass core by pultrusion. To increase the mechanical locking force and bonding surface, carbon filament windings are added in the hoop direction over the carbon face. Finite element analysis and test were conducted to evaluate the effective stiffness and strength of the rods. The results show that the effective axial stiffness of the rebar with indentation are about $50\%$ of the straight rebar.

  • PDF

Analysis of nano-cluster formation in the PECVD process

  • Yun, Yongsup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.144-148
    • /
    • 2013
  • In this paper, the ultra water-repellent thin films were prepared by RF PECVD. On the basis of surface morphology, chemical bonding states and plasma diagnostics, a formation model of clusters for the ultra water-repellent films was discussed from considerations of formation process and laser scattering results. Moreover, using laser scattering method, the relative change of quantity of nano-clusters or size of agglomerates could be confirmed. From the results, the films were deposited with nano-clusters and those of agglomerates, which formed in organosilicon plasma, and formation of agglomerates were depended on the deposition time.

Development of Ultraprecision Finishing Technique using Bonded Magnetic Abrasives (결합된 자성연마입자를 이용한 초정밀 피니싱 기술 개발)

  • 윤종학;박성준;안병운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.59-66
    • /
    • 2003
  • This study suggests the new ultraprecision finishing techniques for micro die and mold parts using magnetic field-assisted polishing. Conventional magnetic abrasives have several disadvantages, which are missing of abrasive particle and inequal mixture between magnetic particle and abrasive particle. Therefore, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Carbonyl iron powder is used as magnetic particle there silicon carbide and alumina are abrasive particles. Developed magnetic abrasives are analyzed using SEM. Feasibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 85.4 ㎚ Ra to 9 ㎚ RA.

MASW FOR QUANTIFYING CHANGE IN SHEAR WAVE VELOCITY AFTER DEEP DYNAMIC COMPACTION AT A SOIL SITE

  • ChoonB.Park;RichardD.Miller
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Two multichannel analysis of surface wave (MASW) surveys were conducted over a soil site in Tacoma Water's Green River Facility, Washington, where construction of a chemical treatment facility had been planned. The purpose of the surveys was to compare soil stiffness characterized by shear-velocity (Vs) distribution before and after Deep Dynamic Compaction (DDC) operation that was designed to improve the soil stiffness. Site soil consisted of very heterogeneous gravel and cobbles in a sand-and-silt matrix. Results from each survey are represented by two 2-D Vs maps delineating Vs variation of soil below the surveyed lines. One map was constructed from those dispersion curves that were analyzed with a significant amount of subjective judgment involved, whereas the other map was constructed from those dispersion curves analyzed with as much objective information as possible. Comparison of 2-D Vs maps indicates that Vs actually decreased after the DDC operations, possibly due to the loss (or reduction) of cohesive bonding between soil particles caused by the compaction operations.

  • PDF

A Study on Wafer Level Vacuum Packaging using Epi poly for MEMS Applications (Epi poly를 이용한 MEMS 소자용 웨이퍼 단위의 진공 패키징에 대한 연구)

  • 석선호;이병렬;전국진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • A new vacuum packaging process in wafer level is developed for the surface micromachining devices using glass silicon anodic bonding technology. The inside pressure of the packaged device was measured indirectly by the quality factor of the mechanical resonator. The measured Q factor was about 5$\times10^4$ and the estimated inner pressure was about 1 mTorr. And it is also possible to change the inside pressure of the packaged devices from 2 Torr to 1 mTorr by varying the amount of the Ti gettering material. The long-term stability test is still on the way, but in initial characterization, the yield is about 80% and the vacuum degradation with time was not observed.

  • PDF

Design of Super-junction TMOSFET with Embedded Temperature Sensor

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.232-236
    • /
    • 2015
  • Super-junction trench MOSFET (SJ TMOSFET) devices are well known for lower specific on-resistance and high breakdown voltage (BV). For a conventional power MOSFET (metal-oxide semiconductor field-effect transistor) such as trench double-diffused MOSFET (TDMOSFET), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a SJ TMOSFET structure is suggested, but sensing the temperature distribution of TMOSFET is very important in the application since heat is generated in the junction area affecting TMOSFET. In this paper, analyzing the temperature characteristics for different number bonding for SJ TMOSFET with an embedded temperature sensor is carried out after designing the diode temperature sensor at the surface of SJ TMOSFET for the class of 100 V and 100 A for a BLDC motor.

Effect of Plasma Treatment of Aluminum on the Fracture Toughness of Aluminum/CFRP Composites (알루미늄의 플라즈마 표면처리가 알루미늄/CFRP 복합재의 파괴인성에 미치는 영향)

  • 신명근;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.153-157
    • /
    • 2003
  • In the present work, the effect of plasma treatment of aluminum on the fracture toughness of CFRP/aluminum composites was investigated. The surface of the aluminum was treated by a DC plasma. The plasma treatment was carried out at volume ratio of acetylene gas to nitrogen gas of 5:5 and the treatment time used was 30 sec. Cracked lap shear specimens of aluminum/CFRP composites were made using secondary bonding procedure. Fracture toughness of aluminum/CFRP composites was determined using the work factor approach. Then, the fracture toughness of plasma-treated aluminum/CFRP composites was compared with that of untreated aluminum/CFRP composites. The results showed that the fracture toughness of plasma-treated aluminum/CFRP composites was about 50 % higher than that of untreated aluminum/CFRP composites.

Design and Applications of Molecularly Imprinted Polymers for Selective Separations (선택적 분리를 위한 분자 각인 고분자의 설계 및 응용)

  • 정수환;오창엽;서정일;박중곤
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIPs were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. The shape of MIP is divided to particle and membrane. MIP membranes can be prepared by surface imprinting, in-situ polymerization, wet phase inversion and the dry phase inversion method. MIPs have been mainly used for analytical separation and biosensor systems to separate and detect chiral compounds and materials with similar structures. However the application of MIP by the chemical industries is still in its infancy stages. This review summarizes the preparative characteristics and applications of MIP with respect to chiral separations and biosensors.

  • PDF

The Effect of Frit on Bonding Behavior of Low-firing-substate and Cu Conductor (프릿트 첨가에 따른 저온소성 기판과 Cu와의 접합 거동에 관한 연구)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.601-607
    • /
    • 1995
  • The bond strength between the low-firing-substrate and Cu conductor depended on the softening point and the amount of frit added to the metal paste. The addition of 3 wt% frit (softening point: 68$0^{\circ}C$) to the metal paste resulted in the improvement of bond strength, which was approximately 3 times higher (3kg/$\textrm{mm}^2$) than that of non frit condition. It was also found that fracture surface shifted to the ceramic substrate in the interface region. These phenomena were attributed to the frit migration into the metal-ceramic interface. It was thought that the migration of glass frit occurred extensively when the softening point of glass firt was 68$0^{\circ}C$. The sheet resistance of Cu conductor remained constant by the addition of 4 wt% frit regardless of softening point of frit. For all samples with more than 4 wt% frit, the sheet resistance increased abruptly.

  • PDF