• Title/Summary/Keyword: bonding material

Search Result 1,100, Processing Time 0.029 seconds

TFT LCD Panel에서의 Bonding Tester를 통한 Sealant 접착력 특성 연구

  • Kim, Dae-Hui;Baek, Seong-Sik;Gang, Sin-U;Choe, Byeong-Deok;Jeong, Han-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.198-198
    • /
    • 2009
  • The size of LCD Panel is gradually getting bigger. But the efficient uses of glass and the increasing output of narrow bezel type makes importantly the role of sealant which bonding two glasses. We devised a new tester with pre-inserted blade for interfacial fracture toughness measurement, and evaluated quantitatively bonding ability of sealant. The blade tester has been analyzed with two process parameter, moving speed and inserting depth of blade.

  • PDF

Fabrication of MEMS Devices Using SOI(Silicon-On-Insulator)-Micromachining Technology (SOI(Silicon-On-Insulator)- Micromachining 기술을 이용한 MEMS 소자의 제작)

  • 주병권;하주환;서상원;최승우;최우범
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.874-877
    • /
    • 2001
  • SOI(Silicon-On-Insulator) technology is proposed as an alternative to bulk silicon for MEMS(Micro Electro Mechanical System) manufacturing. In this paper, we fabricated the SOI wafer with uniform active layer thickness by silicon direct bonding and mechanical polishing processes. Specially-designed electrostatic bonding system is introduced which is available for vacuum packaging and silicon-glass wafer bonding for SOG(Silicon On Glass) wafer. We demonstrated thermopile sensor and RF resonator using the SOI wafer, which has the merits of simple process and uniform membrane fabrication.

  • PDF

Field Emission Characteristics of Carbon Nanotube Cathode Using Ag Nano-Powder as Bonding Materials

  • An, Young-Je;Ha, Sang-Hoon;Choi, Young-Jun;Chang, Ji-Ho;Lee, Hong-Chan;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1594-1597
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver powders as a bonding material. The effects of powder size on the field emission properties for the CNT cathode were investigated The better emission properties of CNT cathodes using smaller particles are due to a low sintering temperature of the bonding materials.

  • PDF

Bondability of Different Electronic Materials by Micro Heat source (마이크로 열원에 의한 이종전자재료의 접합성)

  • 이철인;서용진;신영의;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.206-209
    • /
    • 1994
  • This paper has been researched bondability of electronic devices, such as lead frame and thick film of Ag/Pd on an alumina substrate by different heat sources. To obtain the bonds with high quality, it is very important to control both the thermal distribution of the bonds and it stability, because electronics components is consist of different materials. Therefore, this paper clarifies not only heat mechanism of micro parallel gap resistance bonding method and pulse heat tip bonding method but also investigates selection of heat sources with micro-electronic materials for bonding. Finally, it is realzed fluxless bonding process with filler metal such as plating layers.

Si Micromachining for MEMS-lR Sensor Application (결정의존성 식각/기판접합을 이용한 MEMS용 구조물의 제작)

  • 박흥우;주병권;박윤권;박정호;김철주;염상섭;서상의;오명환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.411-414
    • /
    • 1998
  • In this paper, the silicon-nitride membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PT layer as a IR detection layer was deposited on the membrane and its characteristics were measured. The attack of PT layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer can be solved through the method of bonding/etching of silicon wafer. Because the PT layer of c-axial orientation rained thermal polarization without polling, the more integration capability can be achieved. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by IR detector, and the bonding interface was observed by SEM. The polarization characteristics and the dielectric characteristics of the PT layer were measured, too.

  • PDF

Study on the Bonding Pad Lift Failure in Wire Bonding (와이어 본딩시 본딩 패드 리프트 불량에 관한 연구)

  • 김경섭;장의구;신영의
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1079-1083
    • /
    • 1998
  • In this study, ultrasonic power of Aluminum wire bonder, bond time and bond force are investigated and valued in order to minimize failure of bonding pad lift. We also tried to control those 3 factors properly. We got the conclusion that if we turn down the ability of ultrasonic power or bond time, we can get a pad lift from a boundary between bond pad ad wire because pad metal and wire joining is unstable, but it is best condition when it ultrasonic power is 100∼130unit, bond time is 15∼20msec and bond force is 4∼6gf.

  • PDF

Fabrication of High-performance Carbon Counter Electrode for Dye-sensitized Solar Cells (염료감응 태양전지용 고성능 탄소 상대전극 제작)

  • Jang, Yeon-Ik;Lee, Seung-Yong;Kim, Dong-Hwan;Park, Jong-Ku
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.44-49
    • /
    • 2007
  • In the fabrication of dye-sensitized solar cells (DSSCs), carbon counter electrode has been tested for replacing the platinum counter electrode which has two drawbacks: limited surface area and high material cost. Poor mechanical stability of carbon layer due to weak bonding strength to electrically conductive TCO (transparent conducting oxide) glass substrate is a crucial barrier for practical application of carbon counter electrode. In the present study a carbon counter electrode with high conversion efficiency, comparable to Pt counter electrode, could be fabricated by adaption of a bonding layer between particulate carbon material and TCO substrate.

Effects of Wafer Cleaning and Heat Treatment in Glass/Silicon Wafer Direct Bonding (유리/실리콘 기판 직접 접합에서의 세정과 열처리 효과)

  • 민홍석;주영창;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.479-485
    • /
    • 2002
  • We have investigated the effects of various wafers cleaning on glass/Si bonding using 4 inch Pyrex glass wafers and 4 inch silicon wafers. The various wafer cleaning methods were examined; SPM(sulfuric-peroxide mixture, $H_2SO_4:H_2O_2$ = 4 : 1, $120^{\circ}C$), RCA(company name, $NH_4OH:H_2O_2:H_2O$ = 1 : 1 : 5, $80^{\circ}C$), and combinations of those. The best room temperature bonding result was achieved when wafers were cleaned by SPM followed by RCA cleaning. The minimum increase in surface roughness measured by AFM(atomic force microscope) confirmed such results. During successive heat treatments, the bonding strength was improved with increased annealing temperatures up to $400^{\circ}C$, but debonding was observed at $450^{\circ}C$. The difference in thermal expansion coefficients between glass and Si wafer led debonding. When annealed at fixed temperatures(300 and $400^{\circ}C$), bonding strength was enhanced until 28 hours, but then decreased for further anneal. To find the cause of decrease in bonding strength in excessively long annealing time, the ion distribution at Si surface was investigated using SIMS(secondary ion mass spectrometry). tons such as sodium, which had been existed only in glass before annealing, were found at Si surface for long annealed samples. Decrease in bonding strength can be caused by the diffused sodium ions to pass the glass/si interface. Therefore, maximum bonding strength can be achieved when the cleaning procedure and the ion concentrations at interface are optimized in glass/Si wafer direct bonding.

A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials (CFRP/금속간 접합력 강화를 위한 접합공정 연구)

  • Kwon, Dong-Jun;Park, Sung-Min;Park, Joung-Man;Kwon, Il-Jun
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.416-421
    • /
    • 2017
  • The structural adhesive have been manufactured for improvement of bonding process between CFRP and metal. The optimal condition for bonding process were investigated by evaluating the lap shear strength with amount of adhesive and curing time and the surface treatment of the CFRP. To confirm proper adhesion conditions, the fracture sections between CFRP and metal was observed using reflection microscope. Not only the improvement of the adhesion condition was important, but surface treatment on CFRP was also important. The optimal curing temperature was at $180^{\circ}C$ for 20 minutes. The improvement for adhesive property was confirmed After surface treatment on CFRP. The optimal amount of structural adhesive for bonding between CFRP and metal was $1.5{\times}10^{-3}g/mm^2$. Through the optimization of bonding process, the improvement of mechanical property over 10% is confirmed in comparison with existing adhesive.

Study About Measurement of Interfacial Bonding Strength of STS/Al Clad sheet by Blanking Process (블랭킹 공정을 이용한 STS/Al 클래드 판재의 계면 접합력 측정에 관한 연구)

  • Kim, T.H.;Lee, K.S.;Kim, J.H.;Moon, Y.H.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.267-275
    • /
    • 2018
  • The clad sheet material is produced by a roll-bonding process of one or more materials with different properties. Good formability of clad sheet material is an essential property in to deform a clad metal sheet into a part or component. Performance of the clad sheet material largely depends on interfacial bond strength between different materials. In this study, interfacial bond strength of STS/Al clad sheet was analyzed by varying experimental parameters using a blanking process. Experimental parameters are the punching speed, clearance, and stacking order of plate materials. In addition, blanking test results were compared with bond strengths measured by the T-peel test, that analyzes interface bonding strength of the standard clad sheet. The blanking process was analyzed by the finite element method under the sticking condition of interface of different materials, and experimental results and analysis results were compared.