• Title/Summary/Keyword: bonding material

Search Result 1,099, Processing Time 0.023 seconds

A STUDY ON CLASS II COMPOSITE RESIN CAVITY USING FINITE ELEMENT STRESS ANALYSIS (유한요소법을 이용한 2급 복합레진 와동의 비교 연구)

  • Rim, Young-Il;Yo, In-Ho;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.428-446
    • /
    • 1997
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2 of intercuspal distance) were varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows : 1. Displacement of buccal cusp in R model occurred and increased as widening of the cavity, and displacement in B model was little and not influenced by cavity width. 2. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 3. With the increase of the isthmus width, B model showed no change in the stress and strain. In R model, the stress and strain increased both in the area of buccal-pulpal line angle and the buccal side of marginal ridge, therefore the possibility of crack increased. 4. The stress and strain were distributed evenly on the tooth in B model, but in R model, were concentrated on the buccal side of the distal marginal ridge and buccal-pulpal line angle, therefore the possibility of fracture increased.

  • PDF

Behavior Characteristics of Cement Bentonite Impervious Walls Related to Mixing Methods and Curing Time (강화벤토나이트 차수벽체의 배합방법 및 양생일에 따른 거동 특성)

  • Hwang, Jungsoon;Kim, Seungwook;Jung, Jungi;Lee, Seungjoo;Oh, Byeungsam;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.45-54
    • /
    • 2016
  • In this study, the construction method of new underground continuos impervious wall that the bentonite slurry keeps the stability of excavated trench and the mixture of cement and bentonite plays a role as a constituent of impervious wall in the trench. The merit of homogeneity of the method so called as a cement-bentonite slurry wall enables to accurately make an estimation of hydraulic conductivity of the walls compared with that by other general grouting methods and to verify their waterproof efficiency without difficulty at the design stage. The use of cement-bentonite slurry walls for the containment of groundwater flow has also proven a cost-effective impervious wall technology by employing the simple combination of construction equipments and easy and fast construction procedures. The engineering characteristics of cement-bentonite impervious wall obtained by carrying out the laboratory experiments under various conditions. This study reveals the effect of variation of constituent materials and their mixing methods (Water-Cement-Bentonite) on the engineering characteristics of a composition. Also, this study makes some recommendations on the optimum mixing ratio and mixing sequence for the best quality at the site. That is the most important factors to estimate the construction cost and design of the technique. The comparison is lastly made to evaluate the effect of ordinary Portland and blast furnace slag cement as a bonding material on the behavior of impervious walls.

EFFECTS OF TITANIUM SURFACE COATING ON CERAMIC ADHESION (타이타늄 표면 코팅이 도재 결합에 미치는 영향)

  • Kim, Yeon-Mi;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Doh-Jae;Oh, Gye-Jeong;Lim, Hyun-Pil;Seo, Yoon-Jung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.601-610
    • /
    • 2007
  • Statement of problem: The adhesion between titanium and ceramic is less optimal than conventional metal-ceramic bonding, due to reaction layer form on cast titanium surface during porcelain firing. Purpose: This study characterized the effect of titanium-ceramic adhesion after gold and TiN coating on cast and wrought titanium substrates. Material and method: Six groups of ASTM grade II commercially pure titanium and cast titanium specimens$(13mm{\times}13mm{\times}1mm)$ were prepared(n=8). The conventional Au-Pd-In alloy served as the control. All specimens were sandblasted with $110{\mu}m\;Al_2O_3$ particles and ultrasonically cleaned for 5min in deionized water and dried in air before porcelain firing. An ultra-low-fusing dental porcelain (Vita Titankeramik) was fused on titanium surfaces. Porcelain was debonded by a biaxial flexure test at a cross head speed of 0.25mm/min. The excellent titanium-ceramic adherence was exhibited by the presence of a dentin porcelain layer on the specimen surface after the biaxial flexure test. Area fraction of adherent porcelain (AFAP) was determined by SEM/EDS. Numerical results were statistically analyzed by one-way ANOVA and Student-Newman-Keuls test at ${\alpha}=0.05$. Results: The AFAP value of cast titanium was greatest in the group 2 with TiN coating, followed by group 1 with Au coating and the group 3 with $Al_2O_3$ sandblasting. Significant statistical difference was found between the group 1, 2 and the group 3 (p<.05). The AFAP value of wrought titanium was greatest in the group 5 with TiN coating, followed by the group 4 with Au coating and the group 6 with $Al_2O_3$ sandblasting. Conclusion: No significant difference was observed among the three groups (p>.05). The AFAP values of the cast titanium and the wrought titanium were similar. However the group treated with $Al_2O_3$ sandblasting showed significantly lower value (p<.05).

Interfacial Adhesion Energy of Ni-P Electroless-plating Contact for Buried Contact Silicon Solar Cell using 4-point Bending Test System (4점굽힘시험법을 이용한 함몰전극형 Si 태양전지의 무전해 Ni-P 전극 계면 접착력 평가)

  • Kim, Jeong-Kyu;Lee, Eun-Kyung;Kim, Mi-Sung;Lim, Jae-Hong;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to develop electroless-plated Nickel Phosphate (Ni-P) as a contact material for high efficient low-cost silicon solar cells, we evaluated the effect of ambient thermal annealing on the degradation behavior of interfacial adhesion energy between electroless-plated Ni-P and silicon solar cell wafers by applying 4-point bending test method. Measured interfacial adhesion energies decreased from 14.83 to 10.83 J/$m^2$ after annealing at 300 and $600^{\circ}C$, respectively. The X-ray photoelectron spectroscopy analysis suggested that the bonding interface was degraded by environmental residual oxygen, in which the oxidation inhibit the stable formation of Ni silicide phase between electroless-plated Ni-P and silicon interface.

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery (PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성)

  • Shim Heung-Taek;Jeon Bup-Ju;Byun Dongjin;Lee Joong Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Silicon thin film were synthesized from silane and argon gas mixture directly on copper foil by rf PECVD and then lithium ion batteries were prepared from them employed as the negative electrodes without any further treatment. In the present study, two different kinds of silicon thin films, amorphous silicon and copper silicide were prepared by changing deposition temperature. Amorphous silicon film was prepared below $200^{\circ}C$, but copper silicide film with granular shape was formed by the reaction between silicon radical and diffused copper ions under elevating temperature above $400^{\circ}C$. The amorphous silicon film gives higher capacity than copper silicide, but the capacity decreases sharply with charge-discharge cycling. This is possibly due to severe volume changes. The cyclability is improved, however, by employing the copper silicide as a negative electrode. The copper silicide plays an important role as an active material of the electrode, which mitigates volume change cause by the existence of silicon and copper chemical bonding and provides low electrical resistance as well.

Dislodgement resistance of modified resin-bonded fixed partial dentures utilizing tooth undercuts: an in vitro study

  • Doh, Re-Mee;Lee, Keun-Woo
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • STATEMENT OF PROBLEM. Over the years, resin-bonded fixed partial dentures (RBFPDs) have gone through substantial development and refinement. Several studies examined the biomechanics of tooth preparation and framework design in relation to the success rate of RBFPDs and considered retention and resistance form essential for increase of clinical retention. However, these criteria required preparations to be more invasive, which violates not only the original intentions of the RBFPD, but may also have an adverse effect on retention due to loss of enamel, an important factor in bonding. PURPOSE. The object of this in vitro study was to compare the dislodgement resistance of the new types of RBFPDs, the conventional three-unit fixed partial denture, and conventional design of RBFPD (Maryland bridge). MATERIAL AND METHODS. Fifty resin mandibular left second premolars and second molars were prepared on dentiforms, according to the RBFPD design. After model fabrication (five group, n = 10), prostheses were fabricated and cemented with zinc phosphate cement. After cementation, the specimens were subjected to tensile loading at a cross head speed of 4 mm/min in a universal testing machine. The separation load was recorded and analyzed statistically using one-way analysis of variance followed by Duncan's multiple range test. RESULTS. Group V, the pin-retained RBFPDs, had the highest mean dislodgement resistance, whereas specimens of group II, the conventional RBFPDs, exhibited a significantly lower mean dislodgement resistance compared to the other 4 groups (P <.05). There were no significant differences between group I, III, and IV in terms of dislodgement resistance (P>.05). Group V had the highest mean MPa (N/$mm^2$) (P <.05). There was no significant difference between groups I, II, III and IV (P > .05). CONCLUSION. Within the limits of the design of this in vitro study, it was concluded that: 1. The modified RBFPDs which utilizes the original tooth undercuts and requires no tooth preparation, compared with the conventional design of RBFPDs, has significantly high dislodgement resistance (P < .05). 2. The modified RBFPDs which utilizes the original tooth undercuts and requires minimal tooth preparation, compared with the conventional FPDs, has significantly no difference in retention and dislodgement resistance)(P>.05). 3. The pin-retained FPDs showed a high dislodgement resistance compared to the conventional three-unit FPDs (P<.05).

Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits

  • Koh, Jung-Woo;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2009
  • STATEMENT OF PROBLEM. Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant. PURPOSE. The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model. MATERIAL AND METHODS. Three test groups were prepared: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion. RESULTS. The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P <. 05) during 2 weeks of healing period although there were no significant differences among the test and control groups (P >. 05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P < .05). No significant differences, however, were found among all the groups. All the groups showed no significant differences in ISQ values between 2 and 4 weeks after implant insertion (P >. 05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P < .05). However, there was no significant difference among the experimental groups. CONCLUSION. The surface-modified implants appear to provide superior implant stability to the turned one. Under the limitation of this study, however, we suggest that neither anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.

Strengthen Effect of RC Beam Overlaid or Repaired by VES-LMC (초속경 라텍스개질콘크리트로 덧씌우기 및 보수된 철근콘크리트보의 보강효과)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Choi, Seung-Sic
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • VES-LMC (very-early strength latex-modified concrete) has been widely used as repair material for bridge deck overlay or rehabilitation, because the overlaid or repaired could be opened to the traffic after 3 hours of curing. Although the field performance of VES-LMC generally indicates that it has an excellent bonding to the substrate and shows a long term performance, little quantitative data or research results have been presented in the literature on structural studies. The purpose of this study was to investigate the flexural behavior, interfacial performance, crack propagation, and strengthen effect of RC beam overlaid or repaired by VES-LMC through the 4-point flexural loading test. Two different types of RC beam were fabricated for repair and rehabilitation types. The test result showed that the strengthen effect, in term of flexural stiffness, increases as the depth of repair or overlay increases. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 80 mm and 120 mm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or overlaid beams had a little relative displacement. This means that two materials behave comparatively acting together. However, there were two specimens which had large displacement at the interface, because of poor bond strength. This suggested that interface treatment is one of the most important jobs in composite beams.

Microwave-Syntheses of Zeolitic Imidazolate Framework Material, ZIF-8 (마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성)

  • Park, Jung-Hwa;Park, Seon-Hye;Jhung, Sung-Hwa
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2009
  • One of zeolitic imidazolate framework materials (ZIF), ZIF-8, has been synthesized with microwave irradiation and conventional electric heating at $140{\sim}180^{\circ}C}$. ZIFs are porous crystalline materials and are similar to metal organic framework (MOF) materials because both ZIFs and MOFs are composed of both organic and metallic components. ZIFs are very stable and similar to zeolites because ZIFs have tetrahedral networks. ZIF-8, with a decreased crystal size, can be synthesized rapidly with microwave irradiation. The microwave synthesis of ZIF-8 is completed in 4 h at $140{^{\circ}C}$ and the reaction time is decreased by about 5 times compared with the conventional electric heating. The ZIF-8 obtained by microwave heating has larger surface area and micropore volume compared with the ZIF-8 synthesized with conventional electric heating. It can be confirmed that ZIF-8s show type-I adsorption isotherms, explaining the microporosity of the ZIF-8s. Based on FTIR and TGA results, it can be understood that the ZIF-8s have similar bonding and thermal characteristics irrespective of heating methods such as microwave and conventional heating.