• Title/Summary/Keyword: bonding configuration

Search Result 71, Processing Time 0.03 seconds

The Low Height Looping Technology for Multi-chip Package in Wire Bonder (와이어 본더에서의 초저 루프 기술)

  • Kwak, Byung-Kil;Park, Young-Min;Kook, Sung-June
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.17-22
    • /
    • 2007
  • Recent new packages such as MCP(Multi-Chip Package), QDP(Quadratic Die Package) and DDP(Dual Die Package) have stack type configuration. This kind of multi-layer package is thicker than single layer package. So there is need for the low height looping technology in wirebonder to make these packages thinner. There is stiff zone above ball in wirebonder wire which is called HAZ(Heat Affect Zone). When making low height loop (below $80\;{\mu}m$) with traditional forward loop, stiff wire in HAZ(Heat Affected Zone) above ball is bended and weakened. So the traditional forward looping method cannot be applied to low height loop. SSB(stand-off stitch) wire bonding method was applied to many packages which require very low loops. The drawback of SSB method is making frequent errors at making ball, neck damage above ball on lead and the weakness of ball bonding on lead. The alternative looping method is BNL(ball neckless) looping technology which is already applied to some package(DDP, QDP). The advantage of this method is faster in bonding process and making little errors in wire bonding compared with SSB method. This paper presents the result of BNL looping technology applied in assembly house and several issues related to low loop height consistence and BNL zone weakness.

  • PDF

Effects of Bonding Conditions on Joint Property between FPCB and RPCB using Thermo-Compression Bonding Method (열압착법을 이용한 경.연성 인쇄회로기판 접합부의 접합 강도에 미치는 접합 조건의 영향)

  • Lee, Jong-Gun;Ko, Min-Kwan;Lee, Jong-Bum;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2011
  • We investigated effects of bonding conditions on the peel strength of rigid printed circuit board (RPCB)/ flexible printed circuit board (FPCB) joints bonded using a thermo-compression bond method, The electrodes on the FPCB were coated with Sn by a dipping process. We confirmed that the bonding temperature and bonding time strongly affected the bonding configuration and strength of the joints. Also, the peel strength is affected by dipping conditions; the optimum dipping condition was found to be temperature of $270^{\circ}C$ and time of 1s. The bonding strength linearly increased with increasing bonding temperature and time until $280^{\circ}C$ and 10s. The fracture energy calculated from the F-x (Forcedisplacement) curve during a peel test was the highest at bonding temperature of $280^{\circ}C$.

Orthodontic correction of bialveolar protrusion by interproximal reproximation and water-soluble tubes bonded with deflection-based bonding technique: A case report (인접면 삭제와 변위-기반 접착술로 부착한 수용성 튜브를 이용한 절치 돌출의 교정 치료: 증례보고)

  • Roh, Yu-Yeon;Lim, Sung-Hoon;Jeong, Seo-Rin
    • The Journal of the Korean dental association
    • /
    • v.55 no.12
    • /
    • pp.850-860
    • /
    • 2017
  • Orthodontic treatment with premolar extraction is usually performed to correct bialveolar protrusion. These methods require the use of stiff rectangular working archwire which requires lengthy alignment and leveling before insertion. In this case report, interproximal reproximation was performed instead of extraction. To establish clearance between the archwire and resin domes fixing the archwire, an archwire was inserted into a water-soluble tube before fabricating resin domes. This tube is solved away by the saliva. During fabrication of resin domes, the archwire was deflected intentionally reflecting the displacement of teeth from their ideal position. This can be called as deflection-based bonding (DBB) technique. DBB is different from conventional method of positioning the brackets on its ideal position and then inserting an archwire to align the brackets. Because the orthodontic force of the archwire comes from its deflection from passive configuration, deflecting an archwire as needed can move the teeth more predictably than just bonding brackets on its ideal position. Also, areas with good alignment before orthodontic treatment can be maintained simply by not deflecting the archwire during bonding in these areas. After initial alignment, interproximal reproximation was performed to create 4.8 mm space in the maxillary arch and 4.2 mm space in the mandibular arch. These spaces were closed using orthodontic mini-implant anchorage thus retracting the maxillary incisors 4 mm posteriorly accompanied with 0.7 mm and 0.3 mm distal movement of right and left molars. By using interproximal reproximation and water-soluble tube with DBB, mild bialveolar protrusion was successfully treated without extraction.

  • PDF

Magnetostrictive response characteristics of fiber-optic transducers with different bonding configurations (본딩 구조에 따른 광섬유 자왜변환기의 응답특성)

  • 박무윤;김태균;이경식
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.72-76
    • /
    • 1996
  • The magnetostrictive characteristics of three different forms of magnetostrictive transducers made of 2605SC and 2826MB metallic glasses were measured. In both cases, the two-end-point bonding configuration exhibited the best characteristics. With the two-end-point bonding we measured the effective magnetostrictive coefficient $C_{eff}$ of $1.2{\times}^{-5}Oe^{-2}$, the saturation magnetostriction ${\lambda}_s$ of $7.4{\times}10^{-4}$ and the minimum detectable magnetic field $H_{min}$ of $1.6{\times}10^{-7}Oe$/ √Hz for the 2605SC metallic glass ribbon. Also for the 2826MB metallic glass ribbon, Ceff and ${\lambda}_s$ were $7.6{\times}10^{-6}Oe^{-2}$ and $3.4{\times}10^{-4}$ respectively.

  • PDF

A Study on the Characteristics of T-shaped pavilion in Gyeongbuk (경북지역 "T"형 정자의 특성에 관한 연구)

  • Heo, Kyoung-Do;Kim, Joong-Gu;Woo, Gyeong-Won;Chung, Myung-Sup
    • Journal of architectural history
    • /
    • v.31 no.1
    • /
    • pp.51-60
    • /
    • 2022
  • In the 16~17th centuries, the construction of T-shaped pavilion in Gyeongsangbuk-do was centered on the families of the Goseong-Lee clan and Andong-Kwon clan, who had a lot of exchanges with each other near Andong. It can be presumed that the complex structure of the T-shaped pavilion was intended to represent the technology, economic power, and social influence of the clan. After the 18th century, construction areas spread and construction subjects were diversified, but the number of new constructions decreased. It can be seen that T-shaped pavilion was erected and used for public purposes rather than personal reasons in terms of layout or flat scale. The roof of the T-shaped pavilion is very diverse depending on the wooden structure, the height of the roof and the configuration of the apex. The T-shaped pavilion, which combines two parts, has been developed in a way that strengthens not only the appearance but also the structural bonding force. The bonding strength is strengthened through the process of "roof aligning", "roof bonding", "structure connection", and "structure integration", which shows a similar tendency to the age of actual cases.

Bonding and Antibonding Regions (I) (결합공간과 반결합공간 (제1보))

  • Kim Hojing;Lee Duckhwan
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.15-19
    • /
    • 1979
  • The new concept of the Bonding and Antibonding Regions in the transition density space is developed from the Integral Hellmann-Feynman Theorem and the positive definiteness of the transition density. The unility of this concept is fully demonstrated for H2 system. It is expected that the nature of the electronic perturbation energy due to the change of nuclear configuration can be successfully understood by using this concept. Properties of the transition density is briefly discussed.

  • PDF

The Effect of Cavity Configuration on the Mechanical Properties of Resin Composites.

  • Ryu, G.J.;Park, S.J.;Choi, K.K.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.576.1-576
    • /
    • 2001
  • The objective of this study was to evaluate the effect of configuration of cavity on the mechanical properties such as flexural strength and elastic modulus of resin composites. The materials used were $Clearfil^{TM}$ AP-X(Kuraray, Japan) and $Esthet-X^{TM}$(Dentsply, USA) as resin composite. Dentin-bonding systems used in the study were $Clearfil^{TM}$ SE Bond(Kuraray, Japan) and Prime & Bond $NT^{TM}$(Dentsply, USA). The specimens were prepared as 6 groups with 2 control groups and 4 experimental groups.(omitted)

  • PDF

A Study on Off-Line Programming of Robot Path for Footwear Bonding Automation

  • Lho, Tae-Jung;Che, Woo-Sung;Kang, Dong-Jung;Song, Se-Hoon;Cho, Seong-Ji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.106.2-106
    • /
    • 2002
  • $\textbullet$ Contents 1. Introduction $\textbullet$ Contents 2. System Configuration $\textbullet$ Contents 3. Robot Kinematics $\textbullet$ Contents 4. Shoe outsole shape display program and creating data $\textbullet$ Contents 5. Conclusions

  • PDF

Electronic Structure and Photoreactivity of N-Methyllutione (N-메틸루티돈의 電子構造와 光化學反應性에 關한 硏究)

  • Shim Sang Chul;Hyun Myung Ho;Chae Kyu Ho
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.434-439
    • /
    • 1977
  • The electronic structures of 4-pyridone and lutidone are studied by the SCF MO-CI PPP method and by the configuration analysis method. The spectral data are consistent with the values calculated by the method. The polarization of $S_1({\pi},{\pi}^*)$ state is along the long molecular axis in both compounds. The lowest $({\pi},{\pi}^*)$1 state shows significant charge transfer (16∼18%) from ${\pi}$ bonding orbital of C=O moiety to ${\pi}^*$ antibonding orbital of divinyl amine moiety. The lowest triplet state shows much larger charge transfer (24∼29 %) but in opposite direction compared to that of $S_1({\pi},{\pi}^*)$ state.

  • PDF