• Title/Summary/Keyword: bonding configuration

Search Result 71, Processing Time 0.041 seconds

Comparison of Coverage-Dependent Adsorption Structures of Alanine and Leucine on Ge(100): Bonding Configuration and Adsorption Stability

  • Park, Yeong-Chan;Yang, Se-Na;Kim, Jeong-Won;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.215-215
    • /
    • 2011
  • The bonding configuration and adsorption stability of alanine and leucine adsorbed on Ge(100)-2${\times}$1 surface were investigated and compared using core-level photoemission spectroscopy (CLPES) and density functional theory (DFT) calculations. The bonding configuration, stability, and adsorption energies were evaluated for two different coverage levels. In both cases, the C 1s, N 1s, and O 1s core-level spectra at a low coverage (0.30 ML) indicated that the carboxyl and amine groups participated in bonding with the Ge(100) surface in an "O-H dissociated-N dative bonded structure". At high coverage levels (0.60 ML), both this structure and an "O-H dissociation bonded structure" were present. As a result, we found that alanine adsorbs more easily (lower adsorption energy) than leucine on Ge(100) surfaces due to less steric hindrance of side chain.

  • PDF

COLLECTIVE BEHAVIORS OF SECOND-ORDER NONLINEAR CONSENSUS MODELS WITH A BONDING FORCE

  • Hyunjin Ahn;Junhyeok Byeon;Seung-Yeal Ha;Jaeyoung Yoon
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.565-602
    • /
    • 2024
  • We study the collective behaviors of two second-order nonlinear consensus models with a bonding force, namely the Kuramoto model and the Cucker-Smale model with inter-particle bonding force. The proposed models contain feedback control terms which induce collision avoidance and emergent consensus dynamics in a suitable framework. Through the cooperative interplays between feedback controls, initial state configuration tends to an ordered configuration asymptotically under suitable frameworks which are formulated in terms of system parameters and initial configurations. For a two-particle system on the real line, we show that the relative state tends to the preassigned value asymptotically, and we also provide several numerical examples to analyze the possible nonlinear dynamics of the proposed models, and compare them with analytical results.

Inter-row Adsorption Configuration and Stability of Threonine Adsorbed on the Ge(100) Surfaces

  • Lee, Myungjin;Park, Youngchan;Jeong, Hyuk;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1055-1060
    • /
    • 2013
  • The adsorption structures of threonine on the Ge(100) surface were investigated using core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. CLPES measurements were performed to identify the experimentally preferred adsorption structure. The preferred structure indicated the relative reactivities of the carboxyl and hydroxymethyl groups as electron donors to the Ge(100) surface during adsorption. The core-level C 1s, N 1s, and O 1s CLPES spectra indicated that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction. Three among six possible adsorption structures were identified as energetically favorable using DFT calculation methods that considered the inter- and intra-bonding configurations upon adsorption onto the Ge(100) surface. These structures were O-H dissociated N dative inter bonding, O-H dissociated N dative intra bonding, O-H dissociation bonding. One of the adsorption structures: O-H dissociated N dative inter bonding was predicted to be stable in light of the transition state energies. We thus confirmed that the most favorable adsorption structure is the O-H dissociated N dative-inter bonding structure using CLPES and DFT calculation.

Electronic Structure and Bonding Configuration of Histidine on Ge(100)

  • Lee, Han-Gil;Youn, Young-Sang;Yang, Se-Na;Jung, Soon-Jung;Kim, Se-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3217-3220
    • /
    • 2010
  • The electronic structures and bonding configuration of histidine on Ge(100) have been investigated with various sample treatments using core-level photoemission spectroscopy (CLPES). Interpretation of the Ge 3d, C 1s, N 1s, and O 1s core level spectra being included in these systems revealed that both the imino nitrogen in the imidazole ring and the carboxyl group in the glycine moiety concurrently participate in the adsorption of histidine on a Ge(100) surface at 380 K. Moreover, we could clearly confirm that the imino nitrogen with a free lone pair in the imidazole group adsorbs on Ge(100) more strongly than the carboxyl group in the glycine moiety by examining systems annealed at various temperatures.

Methodology of Parallel Ground Conductor Installation on Underground Transmission System (지중송전 시스템의 병행지선 설치 방안 연구)

  • Hong, Dong-Suk;Park, Sung-Min;Hahn, Kwayng-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.470-471
    • /
    • 2008
  • SVL is installed at underground transmission system to protect cables and insulation joint-box from overvoltages caused by lightning, switching, and line-to-ground fault. Domestic underground power system adopts cross bonding type to reduce the induced voltage at sheath, but single-point bonding is required depending the system installation configuration. SVL can be easily broken by overvoltages induced at joint-box because single-point bonding has uneffective system structure to extract fault current. ANSI/IEEE recommends Parallel Ground Continuity Conductor(PGCC) to prevent SVL breakdown. In this paper, EMTP simulation is performed to analyze effects on SVL under PGCC installation when single-line-to-ground fault occurs. The result shows that PGCC and short single-point bonding distance can reduce overvoltages at SVL.

  • PDF

DESIGN OF ADHESIVE BONDED JOINT USING ALUMINUM SANDWICH SHEET

  • PARK Y.-B.;LEE M.-H.;KIM H.-Y.;OH S.-I.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.657-663
    • /
    • 2005
  • Recently, weight reduction of vehicles has been of great interest, and consequently the use of composite materials in the automotive industry is increasing every year. Composite sandwich panels which consist of two skins and core materials are replacing steels in automotive floor and door. The substitution of one material for another is accompanied by change of joining method, so that adhesive bonding has been popularly used for joining method of composite materials. In the case of adhesive bonding of composite materials, there could be loss in the joint strength by delamination of two faceplates or cracking on faceplate. Thus, it is necessary to prevent loss in the joint strength by designing the joint geometry. In the present paper, adhesive bonding of aluminum sandwich sheet was tried. For understanding joint behavior, studies on stresses in the single lap joint were reviewed and failure modes of composite material were analyzed. Strength tests on the single lap joint consisting of aluminum sandwich sheet and steel were performed and variation of the joint strength with the joint configuration was shown. Based on these results, design guide of adhesive bonding in aluminum sandwich sheet was suggested.

Low Temperature Hermetic Packaging using Localized Beating (부분 가열을 이용한 저온 Hermetic 패키징)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF

Systematic Chirality Investigations of Zn-TLM binding Sites by 2D-NOESY Back-calculations

  • Kim, Daesung;Hoshik Won
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.1
    • /
    • pp.50-58
    • /
    • 1998
  • The systematic chirality investigations were made on the basic of the fact that zinc-binding tallysomycin (ZnTLMA) could have chiral centers (Zn, NC3, C6) at possible 4-, 5-, and 6-coordination models. Although our NMR data exhibit that the ligation sites are ${\beta}$-aminoalanine, ${\beta}$-hydroxyhistidine, and pyrimidine moiety, all possible coordination modes were tested out to see what kind of chiralities on NC3-C6 are favorable to each coordination mode. Tests were also made that take into account the specific configuration of functional groups, including ${\beta}$-aminoalanine, sugar ring, and ${\beta}$-hydroxyhistidine. Tests were finally extended to zinc-water binding and specific conformational studies by introducing various hydrogen bonding networks associated with the propionamide side chain and the carbamide group of mannose. Results of systematic chirality investigations exhibit that the S-S configuration of NC3-C6 is favorable to all of coordination models, but the R-S configuration, if exists at all, should have internal strain on C6 chiral center.

  • PDF