DOI QR코드

DOI QR Code

Electronic Structure and Bonding Configuration of Histidine on Ge(100)

  • Lee, Han-Gil (Department of Chemistry, Sookmyung Women's University) ;
  • Youn, Young-Sang (Molecular-Level Interface Research Center, Department of Chemistry, KAIST) ;
  • Yang, Se-Na (Department of Chemistry, Sookmyung Women's University) ;
  • Jung, Soon-Jung (Molecular-Level Interface Research Center, Department of Chemistry, KAIST) ;
  • Kim, Se-Hun (Molecular-Level Interface Research Center, Department of Chemistry, KAIST)
  • 투고 : 2010.07.27
  • 심사 : 2010.09.07
  • 발행 : 2010.11.20

초록

The electronic structures and bonding configuration of histidine on Ge(100) have been investigated with various sample treatments using core-level photoemission spectroscopy (CLPES). Interpretation of the Ge 3d, C 1s, N 1s, and O 1s core level spectra being included in these systems revealed that both the imino nitrogen in the imidazole ring and the carboxyl group in the glycine moiety concurrently participate in the adsorption of histidine on a Ge(100) surface at 380 K. Moreover, we could clearly confirm that the imino nitrogen with a free lone pair in the imidazole group adsorbs on Ge(100) more strongly than the carboxyl group in the glycine moiety by examining systems annealed at various temperatures.

키워드

참고문헌

  1. Filler, M. A.; Bent, S. F. Prog. Surf. Sci. 2003, 73, 1. https://doi.org/10.1016/S0079-6816(03)00035-2
  2. Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Nature 2000, 405, 665-668. https://doi.org/10.1038/35015043
  3. Goede, K.; Busch, P.; Grundmann, M. Nano. Lett. 2004, 4, 2115-2120. https://doi.org/10.1021/nl048829p
  4. Loscutoff, P. W.; Bent, S. F. Annu. Rev. Phys. Chem. 2006, 57, 467-495. https://doi.org/10.1146/annurev.physchem.56.092503.141307
  5. Ardalan, P.; Davani, N.; Musgrave, C. B. J. Phys. Chem. C 2007, 111, 3692-3699. https://doi.org/10.1021/jp0647131
  6. Wolkow, R. A. Annu. Rev. Phys. Chem. 1999, 50, 413. https://doi.org/10.1146/annurev.physchem.50.1.413
  7. Hamers, R. J.; Coulter, S. K.; Ellison, M. D.; Hovis, J. S.; Padowitz, D. F.; Schwartz, M. P.; Greenlief, C. M.; Russell, J. N. Acc. Chem. Res. 2000, 33, 617. https://doi.org/10.1021/ar970281o
  8. Gao, F.; Li, Z.; Wang, Y.; Burkholder, L.; Tysoe, W. T. J. Phys. Chem. C 2007, 111, 9981-9991. https://doi.org/10.1021/jp071943m
  9. Zhao, X.; Yan, H.; Zhao, R. G.; Yang, W. S. Langmuir 2003, 19, 809-813. https://doi.org/10.1021/la0267037
  10. Feyer, V.; Plekan, O.; Skála, T.; Cháb, V.; Matolín, V.; Prince, K. C. J. Phys. Chem. B 2008, 112, 13655-13660. https://doi.org/10.1021/jp805671h
  11. Youn, Y.-S.; Jung, S.-J.; Lee, H.; Kim, S. Langmuir 2009, 25, 7438. https://doi.org/10.1021/la9003565
  12. Lee, H.; Youn, Y.-S.; Kim, S. Langmuir 2009, 25, 12574 https://doi.org/10.1021/la901914n
  13. Youn, Y.-S.; Lee, H.; Kim, S. Chem. Phys. Chem. 2010, 11, 354
  14. Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1. https://doi.org/10.1016/j.progsurf.2003.12.001
  15. Sarikaya, M.; Tamerler, C.; Jen, A. K. Y.; Schulten, K.; Baneyx, F. Nat. Mater. 2003, 2, 577. https://doi.org/10.1038/nmat964
  16. Zubavichus, Y.; Zharnikov, M.; Yang, Y.; Fuchs, O.; Heske, C.; Umbach, E.; Tzvetkov, G.; Netzer, F. P.; Grunze, M. J. Phys. Chem. B 2005, 109, 884. https://doi.org/10.1021/jp047626m
  17. Xue, G.; Dong, J.; Sun, Y. Langmuir 1994, 10, 1477. https://doi.org/10.1021/la00017a026
  18. Schreier, F. J. Quant. Spectros. Radiat. Transfer. 1992, 48, 743-762. https://doi.org/10.1016/0022-4073(92)90139-U
  19. Landmark, E.; Karlsson, C. J.; Johansson, L. S. O.; Uhrberg, R. I. G. Phys. Rev. B 1994, 49, 16523-16533. https://doi.org/10.1103/PhysRevB.49.16523
  20. Jung, S. J.; Youn, Y.-S.; Lee, H.; Kim, K.-J.; Kim, B.; Kim, S. J. Am. Chem. Soc. 2008, 130, 3288-3289. https://doi.org/10.1021/ja7112307

피인용 문헌

  1. Variation of Coverage-Dependent Attachment of Multifunctional Groups in Alanine and Leucine to the Ge(100)-2×1 Surface: Bonding Configuration and Adsorption Stability vol.115, pp.39, 2011, https://doi.org/10.1021/jp206442s
  2. Adsorption of Histidine and a Histidine Tripeptide on Au(111) and Au(110) from Acidic Solution vol.116, pp.43, 2012, https://doi.org/10.1021/jp307463z
  3. Comparison and Contrast Analysis of Adsorption Geometries of Phenylalanine versus Tyrosine on Ge(100): Effect of Nucleophilic Group on the Surface vol.116, pp.49, 2012, https://doi.org/10.1021/jp3086039
  4. Adsorption Sequence of Multifunctional Groups: A Study on the Reaction Pathway and the Adsorption Structure of Homocysteine on the Ge(100) Surface vol.14, pp.11, 2013, https://doi.org/10.1002/cphc.201300124
  5. Confirmation of the coexistence of two tautomers of 2-mercaptothiazoline on the Ge(100) surface vol.15, pp.39, 2013, https://doi.org/10.1039/c3cp52760c
  6. Autocatalytic Dissociative Adsorption of Imidazole on the Ge(100)-2 × 1 Surface vol.121, pp.38, 2017, https://doi.org/10.1021/acs.jpcc.7b07691
  7. Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface: Conjugation and Geometric Configuration Effects on Adsorption Structures vol.35, pp.2, 2010, https://doi.org/10.5012/bkcs.2014.35.2.581