• Title/Summary/Keyword: bonded prestressing steel

Search Result 14, Processing Time 0.025 seconds

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

Numerical investigation on beams prestressed with FRP

  • Pisani, Marco A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.349-364
    • /
    • 2000
  • This paper aims to make a contribution to understanding which methods apply for structural analysis of beams prestressed with FRP cables. A parametric non-linear numerical analysis of simply supported beams has been performed. In this analysis the shape of the cross-section, the strength of concrete, the material adopted for the cables (steel, GFRP, CFRP), the prestressing system (bonded or unbonded prestressing) and the degree of prestressing were changed to collect a broad range of data which, the author contends, should cover the most frequent types of common practice. The output data themselves and their comparison allow us to suggest some rules that could be adopted when dealing with beams prestressed with these innovatory materials that have an elastic-brittle behaviour.

Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis

  • Kim, T.H.;Cheon, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.63-79
    • /
    • 2012
  • The purpose of this study is to evaluate the behavior and strength of prestressed concrete deep beams using nonlinear analysis. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, the RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of prestressed concrete. The smeared crack approach was incorporated. A bonded or unbonded prestressing bar element is used based on the finite element method, which can represent the interaction between the prestressing bars and concrete of a prestressed concrete member. The proposed numerical method for the evaluation of behavior and strength of prestressed concrete deep beams is verified by comparing its results with reliable experimental results.

Flexural Behavior of External Prestressed H-Beam (외부 긴장된 H형 보의 휨거동 특성)

  • Yang, Dong Suk;Lim, Sang Hun;Park, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Recently, prestressed H-Beam bridges with external unbonded Tendons are increasingly built. The mechanical behavior of prestressed steel H-beams is different from that of normal bonded PSC beams in a point of the slip of tendons at deviators and the change of tendon eccentricity that occurs, when service load are applied in external unbonded steel H-beams. The concept of prestressing steel structures has been widely considered, in spite of long and successful history of prestressing concrete members. In the study, The flexural test on prestressed steel H-beams has been performed in the various aspects of prestressed H-beam including the tendon type and profile. The load was plotted against the deflection and the strain respectively in the steel beam and prestressing bars. The value expected with the equation of internal force equilibrium and compatibility between the deflection of the bars and the H-beam was found to correlate well with the measured data.

Prediction of Prestressing Steel Stress at Ultimate State of Prestressed Concrete Members with External Unbonded Tendons (외부 프리스트레스트 콘크리트 부재의 극한상태에서의 강선응력예측식 제안)

  • 오병환;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.13-24
    • /
    • 1999
  • The external, unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of internal bonded PSC members because of eccentricity change and slip occurrence during loading process. The purpose of the present study is to propose the ultimate failure stresses of prestressing (PS) steels for those external unbonded PSC members. To this end, a comprehensive analysis has been made using the nonlinear finite element analysis program developed recently for external unbonded PSC members by authors. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, load geometry, amount of ordinary steel, and prestressing steel ration have great influence for the ultimate failue stress of PS steel is preposed and is compared with experimental dat as well as existing formulas for internal unbonded members. The Comparison indicates that the proposed equation agrees relatively well with experimental data and that existing formulas including ACI and AASHTO equations show some discrepancies from experimental ones. The present study allows more realistic analysis and design of prestressed concrete structures with external unbonded tendons.

Design of Precast Circular Piers with Prestressing Bars (강봉으로 긴장한 프리캐스트 원형교각의 설계)

  • Shim, Chang-Su;Chung, Chul-Hun;Yoon, Jae-Young;Kim, Cheol-Hwan;Lee, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.121-124
    • /
    • 2008
  • Fast construction of bridge substructures is a new trend of bridge design. A precast pier system with bonded prestressing bars was proposed. In this paper, quasi-static tests on precast prestressed piers were conducted to evaluate the seismic behavior of the precast piers with bonded prestressing bars. In order to strengthen the shear strength of the joints between column segments, steel tubes filled with mortar were used. Displacement ductility and energy dissipation capacity of the precast piers were evaluated. The suggested precast pier system showed better seismic performance than the required ductility. Based on the research results, an example bridge pier for light-railway lines was designed and design considerations were discussed.

  • PDF

A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes (규격별 비부착 긴장재의 극한응력식에 대한 비교 연구)

  • 유성원;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng;Qian Li;Rabin Tuladhar;Feng Shi
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.379-391
    • /
    • 2024
  • The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

Long-term Behavior of Precast Circular Composite Piers with Bonded Tendons (강연선으로 긴장한 강재매입형 조립식 합성교각의 장기거동)

  • Yoon, Jae-Young;Shim, Chang-Su;Chung, Young-Soo;Lim, Hyun-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.205-208
    • /
    • 2008
  • Steel-embedded composite piers can enhance the resistance of core concrete by confinement of the steel elements and also can strengthen the stability of the embedded steel elements by concrete parts, so that the resistance of the composite members and seismic requirements can be provided without increasing section dimensions and self-weight. While modular composite piers with single segment do not need prestressing, precast segment composite piers with multiple segments need to have prestressing to prevent excessive cracking at the joints. Initial stresses and deformation by the introduced prestress are changed by long-term properties of concrete and need to be considered in the design. This paper deals with the prestress losses by the measurement of load cells, strains of reinforcements, concrete and embedded steel tubes.

  • PDF

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.