• 제목/요약/키워드: bonded joint

검색결과 272건 처리시간 0.026초

기계적 합금법으로 제조된 MA754 산화물 분산강화 합금의 마찰압접에 관한 연구 (Friction Welding of MA754 ODS Alloy Produced by Mechanical Alloying)

  • 강지훈
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.198-207
    • /
    • 1994
  • In order to find an optimal friction-welding condition for Ni-base ODS alloy (MA 754) produced by mechanical alloying, joint experiments were performed with various conditions of friction pressures (50~500 MPa), friction times (1~5 sec) and upset pressures (50~600 MPa). The optimal friction pressure and upset pressure must be above 400 MPa and 500 MPa, respectively, which are determined by tensile strengths and fracture features of as-welded joints. A maximum stress설h of 975 MPa could be obtained under these pressure conditions at friction time of 2 sec. Microstructural features of bonded interface by optical microscope and SEM revealed that the interface regions of all specimens are consisted with three distinct regions and defects such as voids, cracks and wavy interfaces exist in the joints produced under not-optimized conditions. EDS results showed that these defects include oxides composed with elements of Al, Y and Ti. The hardness on the bonded interface was higher than in the base metal region. Specimens fractured in bonded interface region had lower strength values compared to those fractured in base metal region. Surfaces of the former showed a typical intergranular fracture.

  • PDF

Fe기 MA956 산화물분산강화합금의 천이액상확산접합에 관한 연구 (Transient-Liquid-Phase Bonding of Fe-Base MA956 ODS Alloy)

  • 강지훈
    • 한국분말재료학회지
    • /
    • 제2권1호
    • /
    • pp.53-62
    • /
    • 1995
  • TLP(Transient-Liquid-Phase) bonding of Fe-base MA956 ODS alloy was performed. As insert metal a commercially available Ni-base alloy(MBF50) and an MA956 alloy with additive elements of 7wt% Si and 1wt% B were used. To confirm the idea that a concurrent use of MA956 powder with Insert metals can enhance the homogenization of constituent elements and thereby reduce the thickness of joint interface, MA956 powder was also inserted In a form of sheet. SEM observation and EDS analysis revealed that Cr-rich phase was formed in the bonded interface in initial stage of isothermal solidification during the bonding process, irrespective of kind of insert metals. Measurement of hardeness in the region of bonded interface and EDS analysis showed that a complete homogenization of composition could not be obtained especially in case of MBF50. Joints using either BSi insert metals only or BSi insert together with MA956 powder interlayer showed, however, a remarkable improvement in a compositional homogenization, even though a rapid grain growth in the bonded interface could not be hindered.

  • PDF

자동차용 구조접착접합이음의 응력해석과 강도평가에 관한 연구

  • 유영철;오승규;이원
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.905-915
    • /
    • 1998
  • Static tensile tests using adhesive-bonded single-lap joints of aluminum alloy were conducted to investigate the effect of geometric factor, overlap length, adherend thickness, adhesive thickness and material composition of adherend/adhesive on the strength of adhesive joint. The average applied shear stress at joint fracture decreased with increasing lap length. However increasing the adherend thickness resulted in a higher joint strength. Higher yield strength of adherend and lower elastic modulus of adhesive is advantageous to the adhesive joint. Newly proposed modified joint factor could be well evaluated the influence of lap length, adherend thickness and adhesive thickness on the bond strength for adhesive joints.

Cohesive Zone Model을 이용한 동력조향 유압실린더의 스틸-알루미늄 접착부 설계 (Joint Design of Steel-Aluminum Power Steering Cylinder by using FE Analysis with Cohesive Zone Model)

  • 이찬주;이상곤;고대철;;이종만;김병민
    • 소성∙가공
    • /
    • 제18권5호
    • /
    • pp.385-391
    • /
    • 2009
  • An adhesively bonded power steering cylinder with a steel tube and an aluminum bracket was developed to reduce the weight of steering systems. To achieve the joint strength between the steel tube and of the aluminum bracket, the shape aluminum bracket re-designed by using the FE-analysis. Fracture behavior of the adhesive layer was considered by a cohesive zone model(CZM), which is based on the two-parameter fracture phenomenon with critical stress and fracture toughness. From the result of FE-analysis with CZM, re-designed power steering cylinder satisfied the desired joint strength for axial and torsion modes. And its joint strength was verified by the fracture test in each mode.

DESIGN OF ADHESIVE BONDED JOINT USING ALUMINUM SANDWICH SHEET

  • PARK Y.-B.;LEE M.-H.;KIM H.-Y.;OH S.-I.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.657-663
    • /
    • 2005
  • Recently, weight reduction of vehicles has been of great interest, and consequently the use of composite materials in the automotive industry is increasing every year. Composite sandwich panels which consist of two skins and core materials are replacing steels in automotive floor and door. The substitution of one material for another is accompanied by change of joining method, so that adhesive bonding has been popularly used for joining method of composite materials. In the case of adhesive bonding of composite materials, there could be loss in the joint strength by delamination of two faceplates or cracking on faceplate. Thus, it is necessary to prevent loss in the joint strength by designing the joint geometry. In the present paper, adhesive bonding of aluminum sandwich sheet was tried. For understanding joint behavior, studies on stresses in the single lap joint were reviewed and failure modes of composite material were analyzed. Strength tests on the single lap joint consisting of aluminum sandwich sheet and steel were performed and variation of the joint strength with the joint configuration was shown. Based on these results, design guide of adhesive bonding in aluminum sandwich sheet was suggested.

구상흑연주철 FCD60과 Cr-Mo강 SCM440 확산접합부의 인장성질에 미치는 접합조건의 영향 (The Effect of Bonding Condition on Tensile Properties of Diffusion Bonds of Graphite Cast Iron FCD60 to Cr-Mo Steel SCM440)

  • 송우현;김정길;강정윤
    • Journal of Welding and Joining
    • /
    • 제22권1호
    • /
    • pp.77-82
    • /
    • 2004
  • The effect of bonding condition on tensile properties of joints diffusion bonded spheroidal graphite cast iron, FCD60 to Cr-Mo steel, SCM 440 was investigated. Diffusion bonding was performed with various temperatures, holding times, pressures and atmospheres. All tensile specimens were fractured at the bonding interface. The tensile strength and elongation was increased with increasing bonding temperature. Especially, tensile strength of joints bonded at 1123K was higher than that of a raw material, FCD60, and tensile strength of joints bonded at 1173K was equal to that of a raw material, SCM440, but elongation of all joints was lower than those of raw materials. There was little the effect of holding time on the tensile properties. In comparison with bonding atmosphere, the difference of tensile strength was not observed, but elongation of joint bonded at vacuum(6.7mPa and 67mPa) was higher than that of Ar gas. Higher the degee of vacuum, elongation increased. Tensile properties of diffusion bonds depended on microstructures of cast iron at the interface and void ratio. Microstructures of cast iron at interface changed with temperature, because decarburizing and interdiffusion at the interface occurs and transformation of austenite-1 ferrite + graphite occurs on the cooling process. The void ratio decreased with increasing temperature, especially, effected on the elongation.

접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구 (Properties of High Power Flip Chip LED Package with Bonding Materials)

  • 이태영;김미송;고은수;최종현;장명기;김목순;유세훈
    • 마이크로전자및패키징학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 고출력 LED 패키지의 열적 경로(thermal path)를 줄이기 위해 플립칩 본딩법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 Au-Sn 열압착 본딩 및 Sn-Ag-Cu(SAC) 리플로우 본딩을 이용하여 본딩 특성 및 열적특성을 비교 평가 하였다. Au-Sn 열압착 본딩은 50 N에서 $300^{\circ}C$의 접합온도로 본딩하였고, SAC 솔더는 솔더페이스트를 인쇄한 후 리플로우법으로 피크온도 $255^{\circ}C$에서 30 sec에서 본딩하였다. SAC 솔더를 사용한 LED 패키지의 전단강도는 $5798.5gf/mm^2$로 Au-Sn 열압착 본딩의 $3508.5gf/mm^2$에 비해 1.6배 높았다. 파단면과 단면분석 결과 Au-Sn, SAC 솔더 모두 LED 칩 내부에서 파단이 일어나는 것을 관찰하였다. 반면 Au-Sn 열압착 본딩 샘플의 열저항은 SAC솔더 접합 샘플에 비해 낮았으며, SAC 솔더 접합부 내부의 기공에 의해 열저항이 커짐을 알 수 있었다.

금속-복합재 하이브리드 체결부의 강도 특성 연구 (A Study on the Strength of Metal-Composite Hybrid Joints)

  • 정재우;송민환;권진회;최진호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.94-97
    • /
    • 2005
  • The strength of aluminum 7075 and carbon composite hybrid joints was studied for adhesive, bolt, and the adhesive-bolt combined joints. Several hybrid joint specimens were tested to get the failure load and modes for three types of the joints. Adhesive Cytec EA9394S was used for aluminum and carbon bonding. Failure load of the adhesive-bolt combined joint was 94 % of the sum of the failure load of the separately bonded and bolted joints. Hybrid joint also showed more stable failure behavior than the simple adhesive or bolted joint.

  • PDF

열응력이 발생하는 접착이음부에서의 초음파 신호처리기법을 이용한 강도평가 (Strength evaluation of adhesive joint with thermal stress using ultrasonic signal processing method)

  • 오승규;황영택;장철섭;오선세;이원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.534-540
    • /
    • 2001
  • One approach to testing the suitability of an adhesive joint for a particular application is to build and test to destruct ion a representative sample of the joint. The nondestructive test will not measure strength directly but will measure a parameter which can be correlated to strength. It is therefore, essential that a suitable nondestructive test is chosen and that its results are correctly interpreted. In this paper, typical defects found in adhesive joints are described together with their significance. The limits and likely success of current physical nondestructive tests are described, and future trends outlined.

  • PDF

CFRP와 결합된 이종재료들에서의 접착제를 이용한 접합부의 파손에 관한 융합 연구 (Convergence Study on Fracture at Joint Using Adhesive at Inhomogeneous Materials Bonded with CFRP)

  • 김재원;조재웅
    • 한국융합학회논문지
    • /
    • 제9권5호
    • /
    • pp.151-156
    • /
    • 2018
  • 본 연구에서는 CFRP와 금속 또는 비금속을 접착제로 접합시켜 이 재료에 대한 파손 연구를 수행하였다. 그 해석 조건으로는 DCB 시험편을 이용하여 시험편의 상부에는 CFRP, 시험편의 하부에는 금속 또는 비금속 재료로 지정하였고 두 상부와 하부 사이를 구조용 접착제로 부착하는 것을 묘사하였다. 이 해석 결과로는 알루미늄으로 접착된 시험편에서 가장 작은 등가응력 보였고 티타늄을 사용하였을 때 박리된 CFRP시험편에서의 최대 전단응력은 가장 낮음을 보였다. 결론적으로 티타늄을 사용하였을 때 시험편의 변형이 가장 작은 것을 알 수 있었고 본 연구 결과를 토대로 접착제를 이용한 접착 계면의 파손데이터를 실생활에 융합하여 그 미적 감각을 나타낼 수 있다.