The key issue for the finite element analysis (FEA) of section steel reinforced concrete (SRC) structure is how to consider the bond-slip performance. However, the bond-slip performance is hardly considered in the FEA of SRC structures because it is difficult to achieve in the finite element (FE) model. To this end, the software developed by Python can automatically add spring elements for the FE model in ABAQUS to considering bond-slip performance. The FE models of the push-out test were conducted by the software and calculated by ABAQUS. Comparing the calculated results with the experimental ones showed that: (1) the FE model of SRC structure with the bond-slip performance can be efficiently and accurately conducted by the software. For the specimen with a length of 1140 mm, 3565 spring elements were added to the FE model in just 6.46s. In addition, different bond-slip performance can also be set on the outer side, the inner side of the flange and the web. (2) The results of the FE analysis were verified against the corresponding experimental results in terms of the law of the occurrence and development of concrete cracks, the stress distribution on steel, concrete and steel bar, and the P-S curve of the loading and free end.
Caprili, Silvia;Mattei, Francesca;Gigliotti, Rosario;Salvatore, Walter
Earthquakes and Structures
/
제14권3호
/
pp.187-201
/
2018
The paper describes a modified cyclic bar model including bond-slip phenomena between steel reinforcing bars and surrounding concrete. The model is focused on plain bar and is useful, for its simplicity, for the seismic analyses of RC structures with plain bars and insufficient constructive details, such as in the case of '60s -'70s Mediterranean buildings. The model is based on an imposed exponential displacements field along the bar including both steel deformation and slip; through the adoption of equilibrium and compatibility equations a stress-slip law can be deducted and simply applied, with opportune operations, to RC numerical models. This study aims to update and complete the original monotonic model published by the authors, solving some numerical inconsistencies and, mostly, introducing the cyclic formulation. The first aim is achieved replacing the imposed linear displacement field along the bar with an exponential too, while the cyclic behaviour is described through a formulation based on the results of parametric analyses concerning a large range of steel and concrete properties and geometric configurations. Validations of the proposed model with experimental results available in the current literature confirm its accuracy and the reduced computational burden, highlighting its suitability in performing nonlinear analyses of RC structures.
The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.
The aim of this paper is to evaluate the accuracy and reliability of the available bond-slip laws which are being used for the numerical modeling of Fiber Reinforced Polymer (FRP)/concrete interfaces. For this purpose, a set of Reinforced Concrete (RC) beams retrofitted with external FRP were modeled using the 3D nonlinear Finite Element (FE) approach. All considered RC beams have been previously tested and the corresponding experimental data are available in the literature. The failure modes of these beams are concrete crushing, steel yielding and FRP debonding. Through comparison of the numerical and experimental results, the effectiveness of each FRP/concrete bond-slip model for the prediction of the structural behavior of externally retrofitted RC beams is assessed. The sensitivity of the numerical results against different modeling considerations of the concrete constitutive behavior and bond-slip laws has also been evaluated. The results show that the maximum allowable stress of FRP/concrete interface has an important role in the accurate prediction of the FRP debonding failure.
In the present paper experimental and numerical analysis of hook-ended steel fiber reinforced concrete is carried out. The experimental tests are performed on notched beams loaded in 3-point bending using fiber volume fractions up to 1.5%. The numerical analysis of fiber reinforced concrete beams is performed at meso scale. The concrete is discretized with 3D solid finite elements and microplane model is used as a constitutive law. The fibers are modelled by randomly generated 1D truss finite elements, which are connected with concrete matrix by discrete bond-slip relationship. It is demonstrated that the presented approach, which is based on the modelling of concrete matrix using microplane model, able to realistically replicate experimental results. In all investigated cases failure is due to the pull-out of fibers. It is shown that with increase of volume content of fibers the effective bond strength and slip capacity of fibers decreases.
Fiber-reinforced concrete (FRC) is a composite material where small fibers made from steel or polypropylene or similar material are embedded into concrete matrix. In a material model each constituent should be adequately described, especially the interface between the matrix and fibers that is determined with the 'bond-slip' law. 'Bond-slip' law describes relation between the force in a fiber and its displacement. Bond-slip relation is usually obtained from tension laboratory experiments where a fiber is pulled out from a matrix (concrete) block. However, theoretically bond-slip relation could be determined from bending experiments since in bending the fibers in FRC get pulled-out from the concrete matrix. We have performed specially designed laboratory experiments of three-point beam bending with an intention of using experimental data for determination of material parameters. In addition, we have formulated simple layered model for description of the behavior of beams in the three-point bending test. It is not possible to use this 'forward' beam model for extraction of material parameters so an inverse model has been devised. This model is a basis for formulation of an inverse model that could be used for parameter extraction from laboratory tests. The key assumption in the developed inverse solution procedure is that some values in the formulation are known and comprised in the experimental data. The procedure includes measured data and its derivative, the formulation is nonlinear and solution is obtained from an iterative procedure. The proposed method is numerically validated in the example at the end of the paper and it is demonstrated that material parameters could be successfully recovered from measured data.
Realistic steel-concrete bond/slip relationships proposed in the literature are usually uniaxial. They are based on phenomenological theories of deformation and degradation mechanisms, and various pull-out tests. These relationships are usually implemented using different analytical methods for solving the differential equations of bond along the anchored portion, for particular situations. This paper justifies the concepts, and points out the assumptions underlying the construction and use of uniaxial bond laws. A finite element implementation is proposed using 2-D membrane elements. An application example on an interior beam-column joint illustrates the possibilities of this approach.
A tendon model that can effectively be used in finite element analyses of prestressed concrete (PSC) structures with bonded tendons is proposed on the basis of the bond characteristics between a tendon and its surrounding concrete. Since tensile forces between adjacent cracks are transmitted from a tendon to concrete by bond forces, the constitutive law of a bonded tendon stiffened by grouting is different from that of a bare tendon. Accordingly, the apparent yield stress of an embedded tendon is determined from the bond-slip relationship. The definition of the multi-linear average stress-strain relationship is then obtained through a linear interpolation of the stress difference at the post-yielding stage. Unlike in the case of a bonded tendon, on the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. The tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. The validity of the proposed two tendon models is verified through correlation studies between analytical and experimental results for PSC beams and slabs.
Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
Computers and Concrete
/
제15권6호
/
pp.951-972
/
2015
The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.
In the present paper, the fiber theory has been employed to model the reinforced concrete (RC) deep beams (DBs) considering the reinforcing steel bar-concrete interaction. To simulate numerically the behavior of materials, the uniaxial materials' constitutive laws have been employed for reinforcements and concrete and the bond stress-slip between the reinforcing steel bars and surrounding concrete are taken into account. Because of the high sensitivity of DBs to shear deformations, the Timoshenko beam theory has been applied. The shear stress-strain (S-SS) relationship has been defined by the modified compression field theory (MCFT) model. By modeling about 300 RC panels and employing a produced numerical database, a study has been carried out to show the sensitivity of the MCFT model. This is performed based on the multiple linear regression (MLR) models. The results of this research also illustrate how different parameters such as characteristic compressive strength of concrete, yield strength of reinforcements and the percentages of reinforcements in different directions get involved in the shear behavior of RC panels without applying complex theories. Based on the results obtained from the analysis of the MCFT S-SS model, a relatively simplified numerical S-SS model has been proposed. Application of the proposed S-SS model in modeling and analyzing the considered samples indicates that there is a good agreement between the simulated and the experimental test results. The comparison between the proposed S-SS model and the MCFT model indicates that in addition to the advantage of better accuracy, the main advantage of the proposed method is simplicity in application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.