• Title/Summary/Keyword: bond resistance

Search Result 401, Processing Time 0.029 seconds

Experimental Study on Freezing-Thawing and Warm-Moisture Resistance of FRP Composites used in Strengthening RC Members (FRP 복합체의 동결융해 및 고온.고습 저항성에 관한 실험 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.345-348
    • /
    • 2006
  • FRP composites which are used in strengthening existing structure are usually adhered to the concrete surface, their performance are directly affected by environmental condition such as freezing-thawing and moisture. Accordingly, it is required to evaluate bond durability between FRP composite and concrete as well as FRP materials itself. The durability characteristics of FRP composite for freezing-thawing are evaluated in this study with the variables of concrete strength, type of FRP composite, freezing-thawing conditions and freezing-thawing cycle. In addition, material durability of GFRP sheet for high temperature/high humidity condition are examined in this experimental study.

  • PDF

Drying Shrinkage and Cracking Resisting Performance of Eco-cement Concrete mixing Fly-ash (플라이 애쉬를 혼입한 에코시멘트 콘크리트의 건조수축 및 균열저항 특성)

  • Yoo, Kwan-Jong;Seo, Tae-Seok;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.409-410
    • /
    • 2009
  • The eco-cement concrete using fly-ash was produced for the improvement of the compressive strength of the eco-cement concrete under the long term age, and compressive strength test, drying shrinkage test, uniaxial restraint shrinkage cracking test, and bond test were carried out. In this study, the cracking resistance performance was investigated.

  • PDF

Experimental Evaluation of the Effect of Steel-Seal and Hydro-Seal in Reinforced Concrete Structures (STEEL-SEAL 및 HYDRO-SEAL의 철근콘크리트 구조무에 미치는 영향에 대한 실험적 연구)

  • 전환석;이강균;배수호;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.287-292
    • /
    • 1997
  • Recent economic growths have accelerating much construction activities of various infrastructures, such as Express railway, Long-span bridges, Multi-story Buildings and etc. Reinforcement steel corrosion to be inevitably caused under the progress of these construction activities have been on and off serious problems in the site, which could incur another tragedic accident to us suffering from safety-ignorance disease. Thus, it is strongly requested to develop probable innovative products which could remove corrosive materials on rebars and also protect steel corrosion of reinforced concrete structures in the construction site. Hydro-Seal and Steel-Seal could solve these problems currently faced with in the construction site. The objective of this research is to experimentally evaluated the effect of Hydro-Seal and Steel-Seal in reinforced concrete structures, of which usage might affect the bond strength between steel and concrete, long-term compressive strength of concrete, corrosion resistance and etc. Related test results show that appropriate dosage of Hydro-Seal and Steel-Seal in reinforced concrete structures didnot affect physical properties of reinforced concrete structures.

  • PDF

Effect of cover cracking on reliability of corroded reinforced concrete structures

  • Chen, Hua-Peng;Nepal, Jaya
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.511-519
    • /
    • 2017
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.

A Study on the Development of In-Processor Dressing Lapping Wheel and its Evaluation of Machining Characteristics (연속 전해드레싱용 래핑숫돌 개발 및 성능평가)

  • Choe, Jae-Yeong;Lee, Eun-Sang;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.132-137
    • /
    • 2001
  • Application of ceramics, carbide, ferrite has grown considerably due to their mechanical properties such as high degree hardness, chemical stability, super wear resistance. Despite these characters, the use of advanced material has not increased because of poor machinability. The application of metal bonded wheel was proposed. But it is difficult that metal bond wheel can be dressed. Recently, to solve this problem, the technology of in-process electrolytic dressing is developed. This method need wheel for electrolytic dressing, power supply and electrolyte. The aim of this study is development of CIB-D wheel for electrolytic and its evaluation of electrolytic characteristics, and achieve ultra-precision lapping of carbide, optic glass.

  • PDF

Performance of a Ceramic Fiber Reinforced Polymer Membrane as Electrolyte in Direct Methanol Fuel Cell

  • Nair, Balagopal N.;Yoshikawa, Daishi;Taguchi, Hisatomi
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.53-56
    • /
    • 2004
  • Direct Methanol Fuel Cell (DMFC) is considered as a candidate technology for applications in stationary, transportation as well as electronic power generation purposes. To develop a high performance direct methanol fuel cell(DMFC), a competent electrolyte membrane is needed. The electrolyte membrane should be durable and methanol crossover must be low. One of the approaches to increase the stability of generally used polymer electrolyte membranes such as Nafion against swelling or thermal degradation is to bond it with an inorganic material physically or chemically. In Noritake Company, we have developed a novel method of reinforcing the polymer electrolyte matrix with inorganic fibers. Methanol crossover values measured were significantly lower than the original polymer electrolyte membranes. These fiber reinforced electrolyte membranes (FREM) were used for DMFC study and stable power output values as high 160 mW/$\textrm{cm}^2$ were measured. The details of the characteristics of the membranes as well as I-V data of fuel cell stacks are detailed in the paper.

Strategy of LMC Application at Bridge Overlay in Korea (LMC 교면포장공법의 국내 도입 방안)

  • 김기헌;윤경구;박상일;홍창우;이주형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1063-1068
    • /
    • 2000
  • Latex modified concrete (LMC) has grown to be accepted as a standard material of construction overlaying bridge decks in America due to its superior physical and chemical properties. The properties of latex, combined with the low water-cement ratio, produce a concrete that has improved flexural, tensile, and bond strength, lower modulus of elasticity, increased freeze-thaw resistance, and reduced permeability compared to conventional concrete of similar mix design. LMC overlays have been service in excellence for 30 years on thousands of bridge in U.S.A. This may, also, prolong the life cycle of bridge deck once it is adopted in Korea. The self-contained, mobile, continuous mixer is most appropriate particularly for concrete quality assurance. Assuring quality on a bridge deck overlay project should begin in the design phase and continue after the construction is completed. Quality should be the concern of everyone involved-owner, designer, and contractor.

An investigation of electrical characteristics of MPPO(Modified-Polyphenylene Oxide) by gas ion implantion (가스이온 주입에 의한 MPPO의 전기적 특성조사)

  • 이준호;이재상;임석진;조용섭;주포국;최병호;이재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.430-433
    • /
    • 1999
  • MPPO(Modified-Polyphenylene Oxide) was irradiated with helium, nitrogen, and argon ions at the ion energy of 50 keV and 70 keV from the dose region of 5$\times$10$^{15}$ to 5$\times$10$^{16}$ ions/$\textrm{cm}^2$. The resistance of the irradiated MPPO surface could be decresed about 10$^{10}$ to 10$^{7}$ $\Omega$/sq with increasing the total ion dose and ion energy. Chemical characteristics of the irradiated surface were analyzed by XPS(X-ray photoelectron spectroscopy).

  • PDF

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.

Selection of the Protective Coating Material for Blades of a Booster Fan in Desulfurization Plant (탈황설비용 부스터팬 블레이드의 코팅재질 선정에 관한 연구)

  • Jeong, Byeong-Yong;Yoo, Hoseon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • This study investigated the coating failure of the blades of booster fans for the 200 MW flue gas desulfurization plant. Although the arc sprayed SM8222 have been tried as blade coating materials aimed to apply as alternatives of Metcoloy(R)2 due to better corrosion-erosion resistance but it is failed. Bond strength tests and practical field experiences have demonstrated high velocity oxy-fuel(HVOF) coating method with Diamalloy 3004 as an alternative to Metcoloy(R) 2 arc spray.

  • PDF