• Title/Summary/Keyword: bond property

Search Result 246, Processing Time 0.025 seconds

A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: Their influence on SO2 absorption behavior

  • Zhu, Jiahong;Xu, Yingjie;Feng, Xiao;Zhu, Xiao
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.148-155
    • /
    • 2018
  • To get a better understanding of the effect of physicochemical properties and microstructure on $SO_2$ absorption behavior of DESs with different molar ratios of EmimCl and EG (from 2:1 to 1:2), densities (${\rho}$), viscosities (${\eta}$), speeds of sound (u), refractive indices ($n_D$), and thermal decomposition temperatures ($T_d$) of EmimCl-EG DESs were measured and used to obtain the other derived properties, such as thermal expansion coefficient (${\alpha}_p$) and activation energy for viscous flow ($E_{\eta}$). Moreover, FT-IR spectra and in situ variable-temperature NMR spectroscopy were employed to study the microstructures of DESs. Based on physicochemical and spectroscopic properties, the influence of the concentrations of EmimCl on the interactions in DESs was explored to be associated with their $SO_2$ absorption behavior. The results show that the interactions between $Emim^+$ and $Cl^-$ of EmimCl is gradually weakening with increasing the concentration of EG in DESs by forming of hydrogen bond interaction of $O-H{\cdots}Cl^-$, resulting in a decrease of ${\rho}$, ${\eta}$, u, $n_D$, and $T_d$ of DESs, and hindering the charge-transfer interaction of $SO_2$ with $Cl^-$ and deceasing $SO_2$ capture capacity. Moreover, the $SO_2$ absorption capacity of DESs is proportional to their ${\rho}$ and $E_{\eta}$, respectively.

Performance of Wood-plastic Panel Made from Populus alba × glandulosa and Low Density Polyethylene (은수원사시나무와 저밀도 폴리에틸렌으로 제조된 목질플라스틱패널의 성능)

  • Kwak, Jun-Hyuk;Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.67-72
    • /
    • 2004
  • Wood/polyethylene panels were manufactured from Populus alba × glandulosa particles and low density polyethylene particles at three mixing rates, 50:50, 60:40, and 70:30. A total of 15 wood/polyethylene panels was made at 145℃ and 5 minutes hot-press time. Wood/polyethylene panels were tested for internal bond, bending, and dimensional stabilities such as thickness swell and water absorption. Panel performance data were analyzed using the SAS programing package. The test results of the wood/polyethylene panels showed that as the polyethylene mixing rates were increased, the panel property values increased. Based on panels' dimensional stabilities, the optimum wood/polyethylene mixing ratio appeared to be 60:40.

Study on the Structural and Transporting Property of Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) (Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) 화합물의 구조 및 전달 특성에 대한 연구)

  • Park, Jung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.614-618
    • /
    • 2003
  • $Sr_2Ru_{1-x}Cu_xO_{4-y}(0.0{\le}x{\le}0.5)$ compounds were prepared using a conventional solid state reaction. Based on the Rietveld refinements of X-ray diffraction results, it is revealed that $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds are the single phases with K2NiF4 type tetragonal system in the range of 0=x=0.3, while the mixed phases of$Sr_2RuO_4$ and $Sr_2CuO_3$ in the range of $0.4{\le}x{\le}0.5$. By means of X-ray photoelectron spectroscopy, the valence states of Ru and Cu in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, have been confirmed to 4+ and 2+, respectively. The bond length difference between $Ru-O_1 ({\times}4)\;and\;Ru-O_2 ({\times}2)\;in\;RuO_6$ octahedron is gradually decreased with increasing Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, which results in the lower c/a ratio. So, it might be assured that the variation of local symmetry of $RuO_6$ octahedron is very closely related to the transporting property of $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds. The behavior of resistivity discloses that the metallic property in $Sr_2RuO_4$ changes into the semiconducting one in proportion to the Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

Study on the Fire Cause Analysis for Explosives Waste by Thermal Analysis Experiment (열분석 실험에 의한 화약류 폐기물의 화재원인분석에 관한 연구)

  • Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.89-100
    • /
    • 2018
  • when the explosive wastes to be treated as designated wastes are brought into the wastes treatment plant by mistake and lead to an explosion in the wastes disposal process, many people and property damage are involved. Waste should be treated properly. As mentioned in this paper, ignition reac- tion tests of ignitable re-burning of explosives packing material waste (solid butadiene) confirmed that ignition was easily occurred, and that even small ignition sources were easily ignited and burned quickly and explosively. In particular, when explosives are loaded into incineration wastes in large quantities and mixed with organic compound wastes, such as fire and explosion accidents caused by explosives packing materials at waste disposal sites, flammable and oxidative gases are generated due to mutual oxidation and pyrolysis It is confirmed that there is a possibility that ignition sources such as spark ignite and instantaneously lead to explosion. It is hoped that this study will be a small reference for on - site detection in the field of fire, and it is expected that the fire - fighting agency will be recognized as a fire investigation agency and will contribute to the improvement of the credibility.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

A SURVEY ON THE USING STATUS AND PERCEPTION OF PIT AND FISSURE SEALANT (치면열구전색제 사용실태와 인식에 관한 조사)

  • Choi, Jung-In;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taek
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.1
    • /
    • pp.53-61
    • /
    • 2009
  • The property of pit and fissure sealant has been improved and many studies on the bond strength, penetration, microleakage have been published. But there are few studies on the using status and perception of pit and fissure sealant within the country. Therefore, this study made a survey on it. Pedodontists and non-pedodontists were surveyed by interview. The Results were as follows; 1. On caries prevention effect, 96.7% of the pedodontists replied that sealants were effective on both permanent teeth and primary teeth. On the other hand, 13.5% of the non-pedodontists replied that sealants weren't effective on both. 2. All of the pedodontists and 27% of the non-pedodontists used rubber dams. 83.3% of the pedodontists and 40.5% of the non-pedodontists used bonding agents. 3. Non-pedodontists used enameloplasty more frequently than Pedodontists but the pattern was not significantly different. 4. The causes of sealant failures included salivary contamination, caries under sealant, low strength, low flowability, overfilling. 5. In the pedodontists, 90% replied that PRR application was desirable and PRR applications were more frequent than sealant application.

  • PDF

Evaluate the Suitability of MC3T3 Cells to Antibacterial Ag-30CaO·70SiO2 Gel (항균성 Ag-30CaO·70SiO2 Gel의 MC3T3 세포적합성에 관한 연구)

  • Yoon, Geum-Jae;Ryu, Jae-Kyung;An, Eung-Mo;Kim, Yun-Jong;Kim, Taik-Nam;Noh, In-Sup;Cho, Sung-Beck
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.671-676
    • /
    • 2014
  • It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel ($Ag-30CaO{\cdot}70SiO_2$ gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological $Ag-30CaO{\cdot}70SiO_2$ is tested. This was done to impart antimicrobial activity to the $30CaO{\cdot}70SiO_2$. Ag ion was added during sol-gel synthesis to replace the $H_2O$ added during the making of the $30CaO{\cdot}70SiO_2$ gel, which has silver solutions of various concentration. After the sol-gel process, 1N-$HNO_3$ solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-$SiO_2$ gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is $Ag-30CaO{\cdot}70SiO_2$ gel.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Effects of Bonding Conditions on Joint Property between FPCB and RPCB using Thermo-Compression Bonding Method (열압착법을 이용한 경.연성 인쇄회로기판 접합부의 접합 강도에 미치는 접합 조건의 영향)

  • Lee, Jong-Gun;Ko, Min-Kwan;Lee, Jong-Bum;Noh, Bo-In;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2011
  • We investigated effects of bonding conditions on the peel strength of rigid printed circuit board (RPCB)/ flexible printed circuit board (FPCB) joints bonded using a thermo-compression bond method, The electrodes on the FPCB were coated with Sn by a dipping process. We confirmed that the bonding temperature and bonding time strongly affected the bonding configuration and strength of the joints. Also, the peel strength is affected by dipping conditions; the optimum dipping condition was found to be temperature of $270^{\circ}C$ and time of 1s. The bonding strength linearly increased with increasing bonding temperature and time until $280^{\circ}C$ and 10s. The fracture energy calculated from the F-x (Forcedisplacement) curve during a peel test was the highest at bonding temperature of $280^{\circ}C$.