• Title/Summary/Keyword: bonacci sequence

Search Result 2, Processing Time 0.023 seconds

ON THE k-LUCAS NUMBERS VIA DETERMINENT

  • Lee, Gwang-Yeon;Lee, Yuo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1439-1443
    • /
    • 2010
  • For a positive integer k $\geq$ 2, the k-bonacci sequence {$g^{(k)}_n$} is defined as: $g^{(k)}_1=\cdots=g^{(k)}_{k-2}=0$, $g^{(k)}_{k-1}=g^{(k)}_k=1$ and for n > k $\geq$ 2, $g^{(k)}_n=g^{(k)}_{n-1}+g^{(k)}_{n-2}+{\cdots}+g^{(k)}_{n-k}$. And the k-Lucas sequence {$l^{(k)}_n$} is defined as $l^{(k)}_n=g^{(k)}_{n-1}+g^{(k)}_{n+k-1}$ for $n{\geq}1$. In this paper, we give a representation of nth k-Lucas $l^{(k)}_n$ by using determinant.