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ON THE k-LUCAS NUMBERS VIA DETERMINENT?

GWANGYEON LEE* AND YUOHO LEE

ABSTRACT. For a positive integer k > 2, the k-bonacci sequence {gflk)} is

defined as: g£k) = ... = g/,(ck_)2 =0, g,gli)l = g,(cm =1and forn >k > 2,
g7(Lk) = 97(;1)1 ""931)2 4o '+9,<1k_)k' And the k-Lucas sequence {l%k)} is defined
as lglk) = gflkjl + ggi)k71 for n > 1. In this paper, we give a representation

of nth k-Lucas lq(ik) by using determinant.
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1. INTRODUCTION

In [1], [2] and [3], the authors have been introduced a generalization of Fi-
bonacci sequence, which is called the k-bonacci sequence for positive integer
k > 2. The k-bonacci sequence {g%k)} is defined as;

k k k k 1
gg ) = T 91(67)2 07 91231 glg )
and for n > k > 27
k k k
97(Lk) gr(z—)l g’fL—)Q o g(L )k

We call ggk‘) the nth k-bonacci number. By the definition of the k-bonacci
sequence, we know that

k k k
G =g +gi=1+1=2,

k k k k
ﬁﬁ=%$+%)+éﬂ=f,

k k k k k
005 = 0 + ol o 4 g =2,
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k k k k _
g s = g5 s+l + gl =252

k k k k _
Gok1 = Goin + o+ g g =28
Thus, we have gj(»k) =27k for j =k, k+1,...,2k — 1. For example, if k = 2,

then {gg)} is the Fibonacci sequence and if k = 5, then ggs) = 955) = gés) =0,

gf) = gés) = 1, and the 5-bonacci sequence is

0,0,0,1,1,2,4,8,16,31, 61,120,236, 464,912, 1793, - - - .

In [2], the authors gave interesting examples in combinatorics and probability
related to the k-bonacci numbers.

We let L,, represent the nth Lucas number, that is, forn > 1, L, = F,,_1 +
F, 1 where Fy = 0. In [1], the author also has been introduced a generalization
of Lucas sequence, which is called the k-Lucas sequence for positive integer k > 2.
Let g(()k) = 0. The k-Lucas sequence {lslk)} is defined by

lslk) (k) + g(k)

=9n1 n+k—1°
We call zﬁl’“) the nth k-Lucas number. Then we have l](k) =21 =12 .. ., k—
1,10 =14 261 and 1P =1® 1™ 4 1™ for no> k. If k = 2, then
17(12) = L,. For example, if £ = 5, then the 5-Lucas sequence is

1,2,4,8,17,32,63, 124, 244, 480,943, 1854, . . ..

In [3], the authors gave a representation of g;k) by using permanent and
determinent for given matrix. In this paper, we give a representation of nth
k-Lucas numbers via determinents of (0, 1)-matrices.

2. k-LUCAS NUMBER

In [1], the author gave two matrices S and Cniy- Let S = [si;] be the
nxn (0,1)-matrix defined by s;; = 1 if and only if -1 < j—i < k—1. For k < n,
let €(mk) — Sflk) — Z?:z Eyj + Eip41 where E;; denotes the n x n matrix with
1 in the (4, ) position and zeros elsewhere. If k > n, then the matrix Fy;41,
j >k, is not defined, and hence we let ¢nk) — Sﬁk) — Z?:z Eyj forn <k.

Let H,, be a (1, —1)-matrix of order n, defined by

(1D DR )P e (]
LoL D (P e (1
1t ... _1)n—3
P (-1)
1 1 (—1)*
i 1 1 |
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In this paper, we consider the matrix €("*) o H,, for n > 2, where ¢(™* o H,
denotes the Hadamard product of €% and H,,.
First, we have the following lemma.

Lemma 2.1. For 2 <n <k, we have
det(€(™®) o H,) =272 = |®)

Proof. If n = 2, then det(€(>*) o Hy) =1 = lgk) and hence the lemma holds.
Now, we consider n > 3,

det (™) o H,)

10 0 0 0 0 0
11 (=D (=12 (=1 - (=13 (=12
0 1 1 (=)' (=1)2 .. (=14 (=13
0 0 1 1 (—1)t (1) (—1)n—*
= det .
| (-1)*
L 0 0 0 0 0 A 1 1 1o
(1 (=D (=) (-1)? (—1)3  (=1)"2 ]
O R = =
1 1 (—1)! (—1)n=5  (—1)n—t
= det '
. . . . . (_1)1
L 0 0 0 0 - 1 1 )

By induction on n and the expansion of determinent about the first column, we
have det(€(™k) o H,) =272 =" | O

Let §(nh) = [fij] = T+ By, where T,, = [t;;] is the n x n (0,1)-matrix defined
by t;; = 1if and only if |¢ — j| < 1, and B,, = [b;;] is the n x n (0,1)-matrix
defined by b;; =1 if and only if 2 < j — ¢ < k — 1. In [2], the following theorem

gave a representation of the nth k-bonacci number gflk) .

Theorem 2.2. [2]. Let {ggk)} be the k-bonacci sequence. Then
gffi)k_a = det(F" 1M o H,_y).
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Since Z%k) (k) (k)

= 9pix_1 T 9n_ 1, from the above theorem, we have

15 = det(§™*) o H,) + det(FF o H,_y). (2.1)

Now we have the following theorem.

Theorem 2.3.  Let k and n be positive integers. For n > 2, we have
det(€™*) o H,) =1 |

Proof. If n <k, then we are done, by Lemma 2.1
Suppose that n > k. Then

det(€™® o H,,)

1 0 0 0 0 —1)k 0 0
L1 (=Y (=12 - (=DF2 (-1t 0 0
01 1 (-1 (“1)F3 (=1)E2 (—1)R 0
(=1)kt
S 1 1 (=1
00 0 0 0 1 1

By the expansion of determinent about the first row and (2.1), we have

det(QZ("’k) oH,) = det(S("fl’k) oH,_1)+ det(%'("fkfl’k) oHy_k—1)
_
n—1-

Therefore, the proof is completed. O

In [1], the author gave a bipartite graph with bipartite adjacency matrix
A, =T,+ E13— Es3+ Eoy — E34. And the number of 1-factor of bipartite graph
with bipartite adjacency matrix A, is the (n — 1)th Lucas number L, _;. Also,
in [1], the author proved that A, is not permutation invariant to ¢(™2) e the
matrix A, is not similar to €2, The next theorem shows that we can get the
(n — 1)th Lucas number L,,_; by using determinent of A,.

Theorem 2.4. For n > 4, the determinent of the matriz A, o H, is the
(n — 1)th Lucas number L,_1, i.c.,

det(An o Hn) = Ln—1~
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Proof. If n =4, then det(A4 0 Hy) =4 = Ls.

By induction on n, we assume that det A, = L,,_1 and consider n + 1. By

the expansion of determinent about the nth column of A, 1 o H,,+1, we have

1.

2.

1 -1 1 0 0 0 0

1 0 1 0 0 0

0 1 0 0 0 0

0 1 1 -1 0 0

det(Any1 0 Hppq) = det
0 O 1 1 -1 0
0 0 - o e 1 1 -1
L0 0 - oo 0 1 1|
= det(A, o H,) + det(A,—1 0 H,—1)
=Ly_1+4+ L,
=L,.
O
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