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ON THE k-LUCAS NUMBERS VIA DETERMINENT†

GWANGYEON LEE∗ AND YUOHO LEE

Abstract. For a positive integer k ≥ 2, the k-bonacci sequence {g(k)n } is

defined as: g
(k)
1 = · · · = g

(k)
k−2 = 0, g

(k)
k−1 = g

(k)
k = 1 and for n > k ≥ 2,

g
(k)
n = g

(k)
n−1+g

(k)
n−2+· · ·+g

(k)
n−k. And the k-Lucas sequence {l(k)n } is defined

as l
(k)
n = g

(k)
n−1 + g

(k)
n+k−1 for n ≥ 1. In this paper, we give a representation

of nth k-Lucas l
(k)
n by using determinant.

AMS Mathematics Subject Classification : 05A19, 05B20, 11B39, 15A15.
Key word and phrases : Fibonacci sequence, k-bonacci number,k-Lucas
number, determinant.

1. Introduction

In [1], [2] and [3], the authors have been introduced a generalization of Fi-
bonacci sequence, which is called the k-bonacci sequence for positive integer

k ≥ 2. The k-bonacci sequence {g(k)n } is defined as;

g
(k)
1 = · · · = g

(k)
k−2 = 0, g

(k)
k−1 = g

(k)
k = 1

and for n > k ≥ 2,

g(k)n = g
(k)
n−1 + g

(k)
n−2 + · · ·+ g

(k)
n−k.

We call g
(k)
n the nth k-bonacci number. By the definition of the k-bonacci

sequence, we know that

g
(k)
k+1 = g

(k)
k + g

(k)
k−1 = 1 + 1 = 2,

g
(k)
k+2 = g

(k)
k+1 + g

(k)
k + g

(k)
k−1 = 22,

g
(k)
k+3 = g

(k)
k+2 + g

(k)
k+1 + g

(k)
k + g

(k)
k−1 = 23,

...
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g
(k)
2k−2 = g

(k)
2k−3 + · · ·+ g

(k)
k + g

(k)
k−1 = 2k−2,

g
(k)
2k−1 = g

(k)
2k−2 + · · ·+ g

(k)
k + g

(k)
k−1 = 2k−1

Thus, we have g
(k)
j = 2j−k for j = k, k+1, . . . , 2k− 1. For example, if k = 2,

then {g(2)n } is the Fibonacci sequence and if k = 5, then g
(5)
1 = g

(5)
2 = g

(5)
3 = 0,

g
(5)
4 = g

(5)
5 = 1, and the 5-bonacci sequence is

0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, · · · .
In [2], the authors gave interesting examples in combinatorics and probability
related to the k-bonacci numbers.

We let Ln represent the nth Lucas number, that is, for n ≥ 1, Ln = Fn−1 +
Fn+1 where F0 = 0. In [1], the author also has been introduced a generalization
of Lucas sequence, which is called the k-Lucas sequence for positive integer k ≥ 2.

Let g
(k)
0 = 0. The k-Lucas sequence {l(k)n } is defined by

l(k)n = g
(k)
n−1 + g

(k)
n+k−1.

We call l
(k)
n the nth k-Lucas number. Then we have l

(k)
j = 2j−1, j = 1, 2, . . . , k−

1, l
(k)
k = 1 + 2k−1, and l

(k)
n = l

(k)
n−1 + l

(k)
n−2 + · · ·+ l

(k)
n−k for n > k. If k = 2, then

l
(2)
n = Ln. For example, if k = 5, then the 5-Lucas sequence is

1, 2, 4, 8, 17, 32, 63, 124, 244, 480, 943, 1854, . . . .

In [3], the authors gave a representation of g
(k)
n by using permanent and

determinent for given matrix. In this paper, we give a representation of nth
k-Lucas numbers via determinents of (0, 1)-matrices.

2. k-Lucas number

In [1], the author gave two matrices S
(k)
n and C(n,k). Let S

(k)
n = [sij ] be the

n×n (0,1)-matrix defined by sij = 1 if and only if −1 ≤ j−i ≤ k−1. For k < n,

let C(n,k) = S
(k)
n −∑k

j=2 E1j + E1k+1 where Eij denotes the n× n matrix with

1 in the (i, j) position and zeros elsewhere. If k ≥ n, then the matrix E1j+1,

j ≥ k, is not defined, and hence we let C(n,k) = S
(k)
n −∑n

j=2 E1j for n ≤ k.

Let Hn be a (1,−1)-matrix of order n, defined by

Hn =




1 (−1)1 (−1)2 (−1)3 · · · (−1)n−1

1 1 (−1)1 (−1)2 · · · (−1)n−2

1 1 1 (−1)1 · · · (−1)n−3

...
...

...
. . .

. . .
...

1 1 1 · · · 1 (−1)1

1 1 1 · · · 1 1




.



On the k-Lucas Numbers via Determinent 1441

In this paper, we consider the matrix C(n,k) ◦Hn for n ≥ 2, where C(n,k) ◦Hn

denotes the Hadamard product of C(n,k) and Hn.
First, we have the following lemma.

Lemma 2.1. For 2 ≤ n ≤ k, we have

det(C(n,k) ◦Hn) = 2n−2 = l
(k)
n−1.

Proof. If n = 2, then det(C(2,k) ◦H2) = 1 = l
(k)
1 and hence the lemma holds.

Now, we consider n ≥ 3,

det(C(n,k) ◦Hn)

= det




1 0 0 0 0 · · · 0 0

1 1 (−1)1 (−1)2 (−1)3 · · · (−1)n−3 (−1)n−2

0 1 1 (−1)1 (−1)2 · · · (−1)n−4 (−1)n−3

0 0 1 1 (−1)1 · · · (−1)n−5 (−1)n−4

...
...

...
. . .

. . .
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
. . . 1 (−1)1

0 0 0 0 0 · · · 1 1



n×n

= det




1 (−1)1 (−1)2 (−1)3 · · · (−1)n−3 (−1)n−2

1 1 (−1)1 (−1)2 · · · (−1)n−4 (−1)n−3

0 1 1 (−1)1 · · · (−1)n−5 (−1)n−4

...
...

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

. . . 1 (−1)1

0 0 0 0 · · · 1 1



(n−1)×(n−1)

.

By induction on n and the expansion of determinent about the first column, we

have det(C(n,k) ◦Hn) = 2n−2 = l
(k)
n−1. ¤

Let F(n,k) = [fij ] = Tn+Bn, where Tn = [tij ] is the n×n (0,1)-matrix defined
by tij = 1 if and only if |i − j| ≤ 1, and Bn = [bij ] is the n × n (0,1)-matrix
defined by bij = 1 if and only if 2 ≤ j − i ≤ k − 1. In [2], the following theorem

gave a representation of the nth k-bonacci number g
(k)
n .

Theorem 2.2. [2]. Let {g(k)n } be the k-bonacci sequence. Then

g
(k)
n+k−2 = det(F(n−1,k) ◦Hn−1).
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Since l
(k)
n = g

(k)
n+k−1 + g

(k)
n−1, from the above theorem, we have

l(k)n = det(F(n,k) ◦Hn) + det(F(n−k,k) ◦Hn−k). (2.1)

Now we have the following theorem.

Theorem 2.3. Let k and n be positive integers. For n ≥ 2, we have

det(C(n,k) ◦Hn) = l
(k)
n−1.

Proof. If n ≤ k, then we are done, by Lemma 2.1
Suppose that n > k. Then

det(C(n,k) ◦Hn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0 (−1)k 0 · · · 0

1 1 (−1)1 (−1)2 · · · (−1)k−2 (−1)k−1 0 · · · 0

0 1 1 (−1)1 · · · (−1)k−3 (−1)k−2 (−1)k−1 · · · 0
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . (−1)k−1

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
... 1 1 (−1)1

0 0 0 0 · · · · · · · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By the expansion of determinent about the first row and (2.1), we have

det(C(n,k) ◦Hn) = det(F(n−1,k) ◦Hn−1) + det(F(n−k−1,k) ◦Hn−k−1)

= l
(k)
n−1.

Therefore, the proof is completed. ¤

In [1], the author gave a bipartite graph with bipartite adjacency matrix
An = Tn+E13−E23+E24−E34. And the number of 1-factor of bipartite graph
with bipartite adjacency matrix An is the (n− 1)th Lucas number Ln−1. Also,
in [1], the author proved that An is not permutation invariant to C(n,2), i.e., the
matrix An is not similar to C(n,2). The next theorem shows that we can get the
(n− 1)th Lucas number Ln−1 by using determinent of An.

Theorem 2.4. For n ≥ 4, the determinent of the matrix An ◦ Hn is the
(n− 1)th Lucas number Ln−1, i.e.,

det(An ◦Hn) = Ln−1.
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Proof. If n = 4, then det(A4 ◦H4) = 4 = L3.
By induction on n, we assume that detAn = Ln−1 and consider n + 1. By

the expansion of determinent about the nth column of An+1 ◦Hn+1, we have

det(An+1 ◦Hn+1) = det




1 −1 1 0 0 0 · · · 0

1 1 0 1 0 0 · · · 0

0 1 1 0 0 0 · · · 0

0 0 1 1 −1 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

0 0 1 1 −1 0

0 0 · · · · · · · · · 1 1 −1

0 0 · · · · · · · · · 0 1 1




= det(An ◦Hn) + det(An−1 ◦Hn−1)

= Ln−1 + Ln−2

= Ln.

¤
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