• Title/Summary/Keyword: boiler system

Search Result 581, Processing Time 0.038 seconds

The Risk Assessment of Carbon Monoxide Poisoning by Gas Boiler Exhaust System and Development of Fundamental Preventive Technology (가스보일러 CO중독 위험성 예측 및 근원적 예방기술 개발)

  • Park, Chan Il;Yoo, Kee-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.27-38
    • /
    • 2021
  • We devised the system to automatically shutdown the boiler and to fundamentally block the harmful gases, including carbon monoxide, into the indoor when the exhaust system swerves: (1) The discharge pressure of the exhaust gas decreases when the exhaust pipe is disconnected. The monitoring system of the exhaust pipe is implemented by measuring the output voltage of APS(Air Pressure Sensor) installed to control the amount of combustion air. (2) The operating software was modified so that when the system recognizes the fault condition of a flue pipe, the boiler control unit displays the fault status on the indoor regulator while shutting down the boiler. In accordance with the ventilation facility standards in the "Rules for Building Equipment Standards" by the Ministry of Land, Infrastructure and Transport, experiments were conducted to ventilate indoor air. When carbon monoxide leaked in worst-case scenario, it was possible to prevent poisoning accidents. However, since 2013, the number of indoor air exchange times has been mitigated from 0.7 to 0.5 times per hour. We observed the concentration exceeding TWA 30 ppm occasionally and thus recommend to reinforce this criterion. In conclusion, if the flue pipe fault detection and the indoor air ventilation system are introduced, carbon monoxide poisoning accidents are expected to decrease significantly. Also when the manufacturing and inspection steps, the correct installation and repair are supplemented with the user's attention in missing flue, it will be served to prevent human casualties from carbon monoxide poisoning.

Optimization of 150kW Cogeneration Hybrid System (150kW급 열병합발전 하이브리드 시스템 최적화 연구)

  • Choi, Jae-Joon;Kim, Hyuk-Joo;Jung, Dae-Heon;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.340-344
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system using Lean burn engine is up to be optimized because of the large amount of the extra-fuel at the after-burner system. The after-burner system at different concept was applied. The reduction time for the activation temperature of the DeNOx catalyst was achieved by making a hole between the combustor and boiler. Because of the lowered fuel consumption, the lowered temperature level was optimized by blocking the hole of the boiler The optimized cogeneration hybrid system consumes $76Nm^3/h$ LNG to produce 150kW electricity compared to before optimization $103Nm^3/h$ LNG. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10 ppm NOx, 50ppm CO, 25ppm HC. The cogeneration hybrid system can meet the current NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

A Study on Thermal Power Plant Drum Boiler-Turbine System Modeling (화력 발전용 드럼 보일러-터빈 시스템의 모델링에 관한 연구)

  • Kim, Woo-Hun;Moon, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1804-1805
    • /
    • 2011
  • In recent year there has been an increasing interest in the dynamic simulation of complex systems. This study uses a large-scale forty-seventh order fossil fuel power plant. Twenty-three state variables are associated with the physical processes and twenty-four state variables associated with the control system. The plant model is expected to predict all dominant effects in a steady and transient state. In this study, the power plant model is reorganized into four subsystems, each with its controller, and the four connected to each other through a manager, which is a fifth part to the system. The four parts of the unit are the boiler system, steam turbine system, condenser system, and feedwater system.

  • PDF

A Development of Platforms for Boiler of Thermal Power Plant (화력발전소 보일러 수퍼히트부 안전발판 개발 연구)

  • Lee, Jung Seok;Lee, Dong Lark;Kim, Hee Kyung;Jeong, Byeong Yong;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • The catastrophic collapse of the in-boiler scaffolding system in the two thermal power plants occurred in March and April 2012. After site investigation and document review, it was found that the specialized scaffolding system was imported for overhaul & maintenance and that the system did not get the safety certification at the import. In this regard, this study developed & proposed an access platform and a support for the vertical tube section of the super heat as well as a variable-length platform for the horizontal tube section, satisfying the domestic certification standards. The access platform was developed to be easy to handle by the worker with a weight of about 0.069 kN, which could reduce the risk of falling accidents and workers' musculoskeletal diseases. For the variable-length platform, it is possible to cope with various changes in length between the horizontal tubes associated with the increase of rigidity in the overlapping and the elimination of the protrusion.

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

Analysis of Air Distribution in the Windbox System of the Utility Boiler (보일러 Windbox내 공기공급 계통의 유량분포 해석)

  • Park, Ho-Young;Kim, Sung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.581-589
    • /
    • 2008
  • The pulverized coal combustion behavior in the utility boiler is very complex since so many physical and chemical processes happen in it, simultaneously. The mixing of pulverized coal with combustion air plays an important role in achieving the efficient combustion and stable boiler operation. The distribution of combustion air supplied to the furnace through the windbox damper system has not been clearly known since the individual measurements of air flow for each air nozzle were not possible, yet. The present study describes the CFD modelling of windbox damper system and aims to obtain the air flow rates and pressure loss coefficients across the present five damper systems, respectively. The one dimensional flow network model has been also established to get air flow distributions across the windbox damper, and applied to the actual plant operation condition. Compared with the designed air flow distribution, the modelled one gives a reasonable agreement. For the actual plant operation, the predicted air flow distribution at each air nozzle is differed with the designed data and strongly affected by the individual opening angle.

A Study on Optimum Design Condition for 'HEAT PUMP' System in Korea (한국에 있어서의 히이트 펌프계의 최적 설계 조건에 관한 연구)

  • Choe, Yeong-Bae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.4
    • /
    • pp.304-315
    • /
    • 1981
  • This paper presents, the result of the study for the fluctuant temperature of the out-side air adopting the heat pump system in seoul, Taejean, Taegu, Busan and Jejeu among principle cities in korea for the purpose of checking the heating capacity, Heat pump capacity (outlet capacity), Coefficient of performance and running cost in comparison with the supporting the energy for the boiler's operation. According to the supply temperature changes of the out door coil by the out side air-return air mixing ratio, the Coefficient of performance is increased from 3. 1 to 5.0. Particularly, in Taegu, it is necessary to adopt the heat pump system against the supplement heat supply on the full outside air intake in January of the heating period, and it was recognized that the running cost is cheaper than that of the Boiler use. At the same time, if it is able to get $25\%$ of return air of the inside in the Seoul, it could be saved its costs when we use the supplementary boiler. And I think it is necessary to the development.

  • PDF