• 제목/요약/키워드: body-voltage

검색결과 477건 처리시간 0.029초

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

MCNPX를 이용한 방사선 치료실의 광중성자 선량 평가 (Evaluation of Photoneutron Dose in Radiotherapy Room Using MCNPX)

  • 박은태
    • 한국콘텐츠학회논문지
    • /
    • 제15권6호
    • /
    • pp.283-289
    • /
    • 2015
  • 현재 방사선치료는 치료효과를 높이기 위해 고에너지 광자선의 사용이 증가하고 있는 추세이다. 일반적으로 6~8 MeV 이상의 고에너지 광자선을 사용하는 경우에는, 광핵반응에 의한 광중성자가 발생됨으로써 방사선 방호의 측면에서 많은 문제를 야기 시킬 수 있다. 이에 본 연구는 MCNPX를 이용하여 방사선 치료실의 광중성자 선량분포를 분석하였다. 그 결과 10 MV와 12 MV 구간에서 급격한 흡수선량의 증가를 보였다. 이를 통해 10 MV를 시작으로 광중성자 플루언스의 급격한 증가가 흡수선량으로 연계됨을 알 수 있었다. 또한 산출된 흡수선량을 바탕으로 등가선량을 환산한 결과는 ICRP 103 권고안의 경우, 낮은 에너지 범위에서 인체의 흡수선량에 대한 2차 광자의 기여를 반영함으로써 ICRP 60 권고안에 비해 낮은 등가선량을 나타냈다.

체성감각 유발 전위에서 montage에 대한 개념 (The Concepts of Montage in Somatosensory Evoked Potentials)

  • 차재관;김승현
    • Annals of Clinical Neurophysiology
    • /
    • 제1권2호
    • /
    • pp.160-167
    • /
    • 1999
  • Although somatosensory evoked potentials(SSEPs) have been utilized as the useful diagnostic tools in evaluating the wide variety of pathological conditions, such as focal lesions affecting the somatosensory pathways, demyelinating diseases, and detecting the clinically occult abnormality, their neural generators is still considerably uncertain. To appreciate the basis for uncertainties about the origins of SSEPs, consider criteria that must be met to establish a causal relationship between activity in a neural structure and a spine/ scalp-recorded potential. Electrode locations and channel derivations for SSEPs recordings are based on two principles:(1) the waveforms are best recorded from electrode sites on the body surface closest to the presumed generator sources along the somatosensory pathways, and(2) studies of the potential-field distribution of each waveform of interest dictate the best techniques to be used. In this article, authors will describe followings focused on ;(1) the concepts of near field potentials(NFPs) and far field potentials(FFPs) - the voltage of NFPs is highly dependent upon recording electrode position, FFPs are unlike NFPs in that they are widely distributed, their latencies and amplitudes are independent of recording electrode.(2) appropriate montage settings to detect the significant potentials in the median nerve and posterior tibial nerve SSEPs(3) neural generators of various potentials(P9, N13, P14, N18, N20, P37) and their clinical significance in interpretating the results of SSEPs. Especially, Characteristics of N18(longduration, small superimposed inflection) suggested that N18 is a complex wave with multiple generators including brainstem structures and thalamic nuclei. And N18 might be used as the parameter of braindeath. Precise understanding on these facts provide an adequate basis utilizing SSEPs for numerous clinical purposes.

  • PDF

Spinning Multi Walled Carbon Nanotubes and Flexible Transparent Sheet Film

  • 장훈식;이석철;김호종;정인현;박종서;남승훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.200-200
    • /
    • 2012
  • We investigated a flexible transparent film using the spinning multi-walled carbon nanotubes (MWCNTs). Spin-capable MWCNTs on iron catalyzed on a SiO2 wafer was grown by chemical vapor deposition, which was performed at $780^{\circ}C$ using C2H2 and H2 gas. The average diameter and length of MWCNTs grown on the substrate were ~15 nm and $250{\sim}300{\mu}m$, respectively. The MWCNT sheets were produced by continuously pulling out from well-aligned MWCNTs on a substrate. The MWCNT sheet films were produced simply by direct coating on the flexible film or grass. The thickness of sheet film was remarkably decreased by alcohol spraying on the surface of sheet. The alcohol splay increased transmittance and decreased electrical resistance of MWCNT sheet films. Single and double sheets were produced with sheet resistance of ~699 and ${\sim}349{\Omega}/sq$, respectively, transmittance of 81~85 % and 67~72%, respectively. The MWCNT sheet films were heated through the application of direct current power. The flexible transparent heaters showed a rapid thermal response and uniform distribution of temperature. In addition, MWCNT yarns were prepared by spinning a bundle of MWCNTs from vertically super-aligned MWCNTs on a substrate, and field emission from the tip and side of the yarns was induced in a scanning electron microscope. We found that the field emission behavior from the tip of the yarn was better than the field emission from the side. The field emission turn-on voltages from the tip and side of MWCNT yarns were 1.6 and $1.7V/{\mu}m$, respectively, after the yarn was subjected to an aging process. Both the configuration of the tip end and the body of the yarn were changed remarkably during the field emission. We also performed the field emission of the sheet films. The sheet films showed the turn on voltage of ${\sim}1.45V/{\mu}m$ during the field emission.

  • PDF

초공동 고속 캐비테이션 터널 구동펌프 개발 (Development of the Driving Pump for the Super-cavitation & High-speed Cavitation Tunnel)

  • 안종우;김건도;백부근;김경열
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.153-160
    • /
    • 2018
  • In order to develop the driving pump for High-speed Cavitation Tunnel(HCT) which can experiment the super-cavitating submerged body, KRISO decided on the pump specification, designed the mixed-flow pump on the basis of the existing pump data and predicted the performance of the design pump using commercial CFD code (CFX-10). After the manufacture and installation of the driving pump, KRISO conducted the trial-test for HCT, analyzed the pump performance and compared trial-test results to those of design stage. The trial-test items for the HCT driving pump are measurements of output current/voltage at the inverter of the driving pump and the flow velocity in the HCT test section. The trial-test results showed the decrease in the flow rate of about 4.6% and the increase in pump head of about 8%, compared with those of the pump prediction. After the trial-test, the performance of the driving pump is predicted using CFX-10 with measured flowrates and pump rotational velocities. Though there is some difference between trial-test and prediction results due to inadequate motor data, it is thought that the tendency is reasonable. It is found that CFX-10 is useful to predict a mixed-flow pump.

대전력 시험소의 부하시험용 콘덴서 뱅크의 최적 설계 및 EMTP 해석 (Optimized Capacitor Bank Design for Capacitive Current Test for High Power Laboratory and Analysis with EMTP Simulation)

  • 안상호;이희철;함길호;김환기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1220-1223
    • /
    • 1998
  • High Power Laboratory is the facility for building to simulate the various phenomena generated from electric systems of the real world and to test making and breaking capability, switching capability and durability of circuit breaker, switchgear and other electric utilities, moreover, load equipments which contain capacitor bank is installed for studying the diverse effects originated from the constituent of load through entire systems or receiving end. Such factors, abnormal voltage or current, can be serious in electrical systems, especially, in the case caused by capacitive components such as overvoltage or inrushcurrent, the problems may be more fatal to the systems. In this paper, the optimal design of capacitor bank which will be equipped in High Power Laboratory, which is for simulating as closely as the practical phenomena resulted from the capacitive currents, and the verification aided by computer simulations are presented. For this, analysis of the circuit characteristics according to the standards which can be criteria of the capacitive current tests and the test circuit configuration in accordance with the analysis are proposed in prelude. In the body of the paper the optimal design of capacitor bank has been obtained on the basis of all conditions mentioned above and the test circuit configuration with LGIS test requirements. furthermore, analysis and verification for the design are derived by EMTP. finally, evaluation for the capacitor bank design and further study plan are concluded.

  • PDF

Chopper Application for Magnetic Stimulation

  • Choi, Sun-Seob;Lee, Sun-Min;Kim, Jun-Hyoung;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.213-220
    • /
    • 2010
  • Since the hypothalamus immediately reacts to a nerve by processing all the information from the human body and the external stimulus being conducted, it performs a significant role in internal secretion; thus, a diverse and rapid stimulus pulse is required. By detecting Zero Detector accurately via the application of AVR on-Chip (ATMEL) using commercial electricity, chopping generates a stimulus pulse to the brain using an IGBT gate to designate a new magnetic stimulation following treatment and diagnosis. To simplify and generate a diverse range of stimuli for the brain, chopping can be used as a free magnetic stimulator. Then, commercial frequency (60Hz) is chopped precisely at the first level of the leakage transformer to deliver an appropriate stimulus pulse towards the hypothalamus when necessary. Discharge becomes stable, and the chopping frequency and duty-ratio provide variety after authorizing a high-pressure chopping voltage at the second level of the magnetic stimulator. These methods have several aims. The first is to apply a variable stimulus pulse via accurate switching frequency control by a voltaic pulse or a pulse repetition rate, according to the diagnostic purpose for a given hypothalamus. Consequently, the efficiency tends to increase. This experiment was conducted at a maximum of 210 W, a magnetic induced amplitude of 0.1~2.5 Tesla, a pulse duration of $200{\sim}350\;{\mu}s$, magnetic inducement of 5 Hz, stimulus frequency of 0.1~60 Hz, and a duration of stimulus train of 1~10 sec.

Analysis of Random Variations and Variation-Robust Advanced Device Structures

  • Nam, Hyohyun;Lee, Gyo Sub;Lee, Hyunjae;Park, In Jun;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.8-22
    • /
    • 2014
  • In the past few decades, CMOS logic technologies and devices have been successfully developed with the steady miniaturization of the feature size. At the sub-30-nm CMOS technology nodes, one of the main hurdles for continuously and successfully scaling down CMOS devices is the parametric failure caused by random variations such as line edge roughness (LER), random dopant fluctuation (RDF), and work-function variation (WFV). The characteristics of each random variation source and its effect on advanced device structures such as multigate and ultra-thin-body devices (vs. conventional planar bulk MOSFET) are discussed in detail. Further, suggested are suppression methods for the LER-, RDF-, and WFV-induced threshold voltage (VTH) variations in advanced CMOS logic technologies including the double-patterning and double-etching (2P2E) technique and in advanced device structures including the fully depleted silicon-on-insulator (FD-SOI) MOSFET and FinFET/tri-gate MOSFET at the sub-30-nm nodes. The segmented-channel MOSFET (SegFET) and junctionless transistor (JLT) that can suppress the random variations and the SegFET-/JLT-based static random access memory (SRAM) cell that enhance the read and write margins at a time, though generally with a trade-off between the read and the write margins, are introduced.

컴퓨터 방사선영상에서 고 관전압 기법을 이용한 안구 입사표면선량 감소에 관한 연구 (A Study on Reducing of Entrance Surface Dose with the Eye in the Computed Radiography by Using High Kilo Voltage Peak Technique)

  • 성열훈;임재동
    • 대한안전경영과학회지
    • /
    • 제13권2호
    • /
    • pp.91-96
    • /
    • 2011
  • The purpose of this study was to minimize of entrance surface dose (ESD) at the eye using high kVp technique in the computed radiography. We used REX-650R (Listem, Korea) general X-ray unit, and external detector with ESD dosimeter of Piranha 657 (RTI Electronics, Sweden). We used head of the whole body phantom. The total 64 images of X-ray anterior-posterior of skull were acquired using the film/screen (F/S) method and the digital of computed radiography method. The three radiology professor of more 10 years of clinical career evaluated a X-rays images in the same space by 5-point scale. The external detector was performed measurement of ESD of three times by same condition on the eye of the head phantom. The good image quality in the F/S method (90 kVp, 2.5 mAs) showed at the minimized ESD of 0.310 ${\pm}$ 0.001 mGy. the good image quality in the computed radiography method (90 kVp, 2.0 mAs) showed at the minimized ESD of 0.180 ${\pm}$ 0.002 mGy (P = 0.002). Finally the radiation dose could reduced about 50% in the computed radiography method more than the F/S method. In addition the eye entrance surface dose using high kVp technique with the computed radiography was reduced 92% more than conventional technique (F/S method).