DOI QR코드

DOI QR Code

Evaluation of Photoneutron Dose in Radiotherapy Room Using MCNPX

MCNPX를 이용한 방사선 치료실의 광중성자 선량 평가

  • 박은태 (인제대학교 부산백병원 방사선종양학과)
  • Received : 2015.02.03
  • Accepted : 2015.03.31
  • Published : 2015.06.28

Abstract

Recently, high energy photon radiotherapy is a growing trend for increasing therapy results. Commonly, if you use high energy photons above 6~8 MeV nominal accelerator voltage, It lead the photo-nuclear reaction and the generation of photo-neutron are accompanied and these problematic factors are issued in the view of radiation protection. Therefore, in this study analyzed for dose distribution of photo-neutron in radiotherapy room based on MCNPX. As a result, absorbed dose is increased sharply from 10 MV to 12 MV. It was founded that the rapid increasement of photoneutron fluence was related to the absorbed dose at above 10 MV. Also, in case of the recommendation of ICRP 103, the outcome of an exchanged equivalent dose which based on calculated an absorbed dose, showed lower equivalent dose than ICRP 60 by reflecting the contribution of secondary photon for absorbed dose of human body in the low energy band.

현재 방사선치료는 치료효과를 높이기 위해 고에너지 광자선의 사용이 증가하고 있는 추세이다. 일반적으로 6~8 MeV 이상의 고에너지 광자선을 사용하는 경우에는, 광핵반응에 의한 광중성자가 발생됨으로써 방사선 방호의 측면에서 많은 문제를 야기 시킬 수 있다. 이에 본 연구는 MCNPX를 이용하여 방사선 치료실의 광중성자 선량분포를 분석하였다. 그 결과 10 MV와 12 MV 구간에서 급격한 흡수선량의 증가를 보였다. 이를 통해 10 MV를 시작으로 광중성자 플루언스의 급격한 증가가 흡수선량으로 연계됨을 알 수 있었다. 또한 산출된 흡수선량을 바탕으로 등가선량을 환산한 결과는 ICRP 103 권고안의 경우, 낮은 에너지 범위에서 인체의 흡수선량에 대한 2차 광자의 기여를 반영함으로써 ICRP 60 권고안에 비해 낮은 등가선량을 나타냈다.

Keywords

References

  1. J. Thariat, J. M. Hannoun-Levi, A. Sun Myint, T. Vuong, and J. P. Gerard, "Past, present, and future of radiotherapy for the benefit of patients," Nature Reviews Clinical Oncology, Vol.10, No.1, pp.52-60, 2012. https://doi.org/10.1038/nrclinonc.2012.203
  2. S. S. Kang, I. H. Go, G. J. Kim, S. J. Lee, Y. S. JI, and J. U. Choi, Radiation Therapeutics 3rd edition, Cheong-gu munhwasa, 2014.
  3. S. Zabihinpoor and M. Hasheminia, "Calculation of Neutron Contamination from Medical Linear Accelerator in Treatment Room," Adv. Studies Theor. Phys., Vol.5, No.9, pp.421-428, 2011.
  4. NCRP, Neutron Contamination from Medical Electron Accelerator(NCRP Report No. 79), National Council on Radiation Protection and Measurements, Bethesda, Maryland, 1984.
  5. F. M. KHAN, The Physics Of Radiation Therapy 4/E, Lippincott Williams & Wilkins, 2009.
  6. W. L. Huang, Q. F. Li, and Y. Z. Lin, "Calculation of photoneutrons produced in the targets of electron linear accelerators radiography and radiotherapy applications," Nuclear Instruments and Methods in Physics Raesearch B, Vol.229, No.3, pp.339-347, 2005. https://doi.org/10.1016/j.nimb.2004.12.117
  7. Y. S. Park, H. T. KIM, S. J. Ko, and S. S. Lee, Radiobiology 2nd edition, Jeongmungak, 2012.
  8. ICRP, The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, 2007.
  9. E. T. Park, D. Y. Lee, S. J. Ko, J. H. Kim, and S. S. Kang, "A Study on Photon Spectrum in Medical Linear Accelerator Based on MCNPX," Journal of the Korean Society of Radiology, Vol.8, No.5, pp.249-254, 2014. https://doi.org/10.7742/jksr.2014.8.5.249
  10. J. S. Lee, "Dose Evaluation Using Mathematical Simulation of Radiation Exposure Body in Mammography System," Journal of the Korean Society of Radiology, Vol.8, No.4, pp.155-161, 2014. https://doi.org/10.7742/jksr.2014.8.4.155
  11. E. T. Park, S. J. Ko, J. H. Kim, and S. S. Kang, "Evaluation of Photoneutron Energy Distribution in the Radiotherapy Room," Journal of Radiological Science and Technology, Vol.37, No.3, pp.223-231, 2014.
  12. T. Rauscher and F. K. Thielemann, "Predicted cross-sections for photon induces particle emission," Atomic Data and Nuclear Data Tables, Vol.88, pp.1-74, 2004. https://doi.org/10.1016/j.adt.2004.07.001
  13. S. S. Dietrich and B. L. Berman, "Atlas of photoneutron cross sections obtained with monoenergetic photons," Atom. Data. Nuc. Data. Tab., Vol.38, pp.199-338, 1988. https://doi.org/10.1016/0092-640X(88)90033-2
  14. H. S. Kim, New Empirical Formula for Neutron Dose Level at the Maze of Medical Linear Accelerator Facilities, Nuclear Engineering in Hanyang University, 2007.
  15. ICRP, 1991b., The 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, 1991.