• Title/Summary/Keyword: body forces

Search Result 666, Processing Time 0.027 seconds

Horizontal hydrodynamic coupling between shuttle tanker and FPSO arranged side-by-side

  • Wang, Hong-Chao;Wang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.275-294
    • /
    • 2013
  • Side-by-side offloading operations are widely utilized in engineering practice. The hydrodynamic interactions between two vessels play a crucial role in safe operation. This study focuses on the coupled effects between two floating bodies positioned side-by-side as a shuttle tanker-FPSO (floating production, storage and offloading) system. Several wave directions with different side-by-side distances are studied in order to obtain the variation tendency of the horizontal hydrodynamic coefficients, motion responses and mean drift forces. It is obtained that the coupled hydrodynamics between two vessels is evidently distinguished from the single body case with shielding and exaggerating effects, especially for sway and yaw directions. The resonance frequency and the peak amplitude are closely related with side-by-side separation distance. In addition, the horizontal hydrodynamics of the shuttle tanker is more susceptible to coupled effects in beam waves. It is suggested to expand the gap distance reasonably in order to reduce the coupled drift forces effectively. Attention should also be paid to the second peaks caused by hydrodynamic coupling. Since the horizontal mean drift forces are the most mainly concerned forces to be counteracted in dynamic positioning (DP) system and mooring system, prudent prediction is beneficial in saving consumed power of DP system and reducing tension of mooring lines.

A Musculoskeletal Model for Biomechanical Analysis of Transfemoral Amputees Climbing Stairs

  • Bae, Tae-Soo;Kim, Shin-Ki;Mun, Mu-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.30-33
    • /
    • 2008
  • Understanding the characteristics of amputee gait is key in developing more advanced prostheses. The aim of this study was to quantitatively analyze a stair-climbing task for transfemoral amputees with a prosthesis and to predict the muscle forces and joint moments at musculoskeletal joints using a dynamic analysis. A three-dimensional musculoskeletal model of the lower extremities was constructed from a gait analysis using transformation software for two transfemoral amputees and ten healthy people. The measured ground reaction forces and kinematical data of each joint from the gait analysis were used as input data for an inverse dynamic analysis. Dynamic analyses of an transfemoral amputee climbing stairs were performed using musculoskeletal models. The results showed that the summed muscle forces of the hip extensor of an amputated leg were greater than those of a sound leg. The opposite was true at the hip abductor and knee flexor of an amputated leg. We also found that higher moments at the hip and knee joints of the sound leg were required to overcome the flexion moment caused by the body weight and amputated leg. Dynamic analyses using musculoskeletal models may be a useful means to predict muscle forces and joint moments for specific motion tasks related to rehabilitation therapy.

Parameteric Analysis for Up-lifting force on Slab track of Bridge (교량상 slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yoon;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Buckling analysis of structures under combined loading with acceleration forces

  • Wang, Wenjing;Gu, Randy
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.1051-1067
    • /
    • 2014
  • The structures of concern in this study are subject to two types of forces: dead loads from the acceleration imposed on the structures as well as the installed operation machines and the additional adjustable forces. We wish to determine the critical values of the adjustable forces when buckling of the structures occurs. The mathematical statement of such a problem gives rise to a constrained eigenvalue problem (CEVP) in which the dominant eigenvalue is subject to an equality constraint. A numerical algorithm for solving the CEVP is proposed in which an iterative method is employed to identify an interval embracing the target eigenvalue. The algorithm is applied to four engineering application examples finding the critical loads of a fixed-free beam subject to its own body force, two plane structures and one wide-flange beam using shell elements when acceleration force is present. The accuracy is demonstrated using the first example whose classical solution exists. The significance of the equality constraint in the EVP is shown by comparing the solutions without the constraint on the eigenvalue. Effectiveness and accuracy of the numerical algorithm are presented.

Verifying the Suitability or Unsuitability of the Opening Force Criteria Applied to Air Pressurized Access Door to a Smoke Control Zone (급기 가압 제연구역 출입문에 적용되는 개방력 기준의 적합성 여부에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5820-5825
    • /
    • 2014
  • The aim of this study was to verify the suitability or unsuitability of Korean body types by measuring the opening force criteria of an air pressurized access door to a smoke control zone. The opening force criteria were verified by comparing the NFSC 501A, NFPA 92A and BS-EN 12101-6 based on the body standards information from the Korean Agency for Technology and Standards. When measuring the opening forces, the posture of the body should be standing upright and pushing an access door with the right hand, which is a criterion for designing doors. As a result of analyzing the actual measurement results, the pushing force of men and women in their 30's was the maximum value and the forces in those in their 60's was the minimum value. In addition, the deviations in the pushing forces varied considerably. As a result of comparing the NFSC 501A, the men showed lower values than the criteria in every gender and age variable except for the 20's, 30's and 50's variable. A comparison of the criteria of NFPA 92A showed that the mean of the measured values from every gender and age was also lower than the criteria. In addition, when comparing the criteria of BS-EN 12101-6, it was found that the men in every age variable were higher than the criteria. On the other hand, the women in every age variable were lower than the criteria. Therefore, considering the Korean body type against the Western body type, it was decided that the opening force of an access door to a smoke control area to make a downward adjustment should be 110 N in the local criteria. Furthermore, the criteria should consider the characteristics of buildings and users because an optional application of the international standard is not necessarily suitable for local situations.

The Theta Analysis on the Components of Ground Reaction Force According to the Ground Conditions During Gait (보행 시 지면조건에 따른 지면반력 성분의 세타 분석)

  • Ryew, Che-Cheong;Hyun, Seung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the theta on the components of ground reaction force according to the ground conditions during gait. Method : Six healthy women(mean age: 22 yrs, mean height: $166.14{\pm}2.51cm$, mean body weights: $56.61{\pm}4.58kg$) participated in this study. The medial-lateral GRF(Fx 1), anterior-posterior GRF(Fy 1, Fy 2), vertical GRF(Fz 1, Fz 2, Fz 3), and impact loading rate were determined from time function and frequency domain. Also, GRF theta were time function and forces. Results : Fx 1, Fy 1 and Fy 2 of stair descending showed significant statistically higher forces than that of level walking, and ascending. Fz 1 of stairs descending showed significant statistically higher forces than that of level walking and stairs ascending(theta $88.62^{\circ}$). Also, Fz 2 of level walking showed significant statistically higher forces than that of stairs ascending and descending(theta $65.78^{\circ}$). Fz 3 of stairs ascending showed significant statistically higher forces than that of level walking and stairs descending($65.26^{\circ}$). Impact loading rate of stairs descending showed significant statistically higher forces than that of level and ascending walking. The GRF showed similar correlation with GRF theta(r=.603) according to the ground conditions during gait. Conclusion : These results suggest that the GRF theta can be used in conjunction with a gait characteristics, prediction of loading rate and dynamic stability.

Analysis of the Uncertainty of Compressive Forces Acting on the Patella by Using Multi-Body Modeling and Muscle Mechanics (다물체 모델링과 근의 특성을 이용한 무릎뼈에 가해지는 압력의 불확실성 추정 연구)

  • NamGoong, Hong;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.785-790
    • /
    • 2011
  • The goal of this study is to estimate the force acting on the knee joint in the human body by using the Hilltype muscle model based on a musculoskeletal model of the human lower extremity in the sagittal plane. For estimating the force applied, the human leg is modeled using multi-body modeling. This leg model comprises biarticular muscles acting on two joints of the upper and lower limbs, and the muscles include some of the major muscles such as the hamstring. In order to analyze the uncertainty of the applied forces acting on the knee joint, statistical distributions of human body, leg part, parameters are required and to obtain the parameter's statistical characteristic of the part sample survey method is employed. Finally, by using the sensitivity information of the parameters, the force acting on the knee joint can be estimated.

Measured aerodynamic coefficients of without and with spiked blunt body at Mach 6

  • Kalimuthu, R.;Mehta, R.C.;Rathakrishnan, E.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.225-238
    • /
    • 2019
  • A spike attached to a blunt nosed body significantly alters its flow field and influences the aerodynamic coefficients at hypersonic speed. The basic body is an axisymmetric, with a hemisphere nose followed by a cylindrical portion. Five different types of spikes, namely, conical aerospike, hemisphere aerospike, flat-face aerospike, hemisphere aerodisk and flat-face aerodisk are attached to the basic body in order to assess the aerodynamic characteristic. The spiked blunt body without the aerospike or aerodisk has been set to be a basic model. The coefficients of drag, lift and pitching moment were measured with and without blunt spike body for the length-to-diameter ratio (L/D) of 0.5, 1.0, 1.5 and 2.0, at Mach 6 and angle of attack up to 8 degrees using a strain gauge balance. The measured forces and moment data are employed to determine the relative performance of the aerodynamic with respect to the basic model. A maximum of 77 percent drag reduction was achieved with hemisphere aerospike of L/D = 2.0. The comparison of aerodynamic coefficients between the basic model and the spiked blunt body reveals that the aerodynamic drag and pitching moment coefficients decrease with increasing the L/D ratio and angle of attack but the lift coefficient has increasing characteristics.

Captive Model Test of Submerged Body Using CPMC (몰수체의 CPMC 구속모형시험)

  • Kim, Yeon-Gyu;Yun, Kun-Hang;Kim, Sun-Young;Kim, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.296-303
    • /
    • 2012
  • The captive model test of submerged body using CPMC(Computerized Planar Motion Carriage) was carried out at the Ocean Basin of KORDI/MOERI. The target model is a submarine with general hullform. The forces and moments acting on the submerged body were measured by 6-axis waterproof gage. The oblique motion test and turning test were carried out in horizontal and vertical planes of the model. Maneuvering coefficients and derivatives were obtained from the test results. The stability indices in horizontal and vertical planes were obtained by using maneuvering derivatives. In this paper the introduction of test equipment and test results are presented.