• Title/Summary/Keyword: body configuration

Search Result 315, Processing Time 0.027 seconds

Numerical Simulation of Rotor-Fuselage Aerodynamic Interaction Using an Unstructured Overset Mesh Technique

  • Lee, Bum-Seok;Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical simulation of unsteady flows around helicopters was conducted to investigate the aerodynamic interaction of main rotor and other components such as fuselage and tail rotor. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between the main rotor, and other components. As the application of the present method, calculations were made for the rotor-fuselage aerodynamic interaction of the ROBIN (ROtor Body INteraction) configuration and for a complete UH-60 helicopter configuration consisted of main rotor, fuselage, and tail rotor. Comparison of the computational results was made with measured time-averaged and instantaneous fuselage surface pressure distributions for the ROBIN configuration and thrust distribution and available experimental data for the UH-60 configuration. It is demonstrated that the present method is efficient and robust for the simulation of complete rotorcraft configurations.

Extended Range of a Projectile Using Optimization of Body Shape (비행탄두 형상 최적화를 이용한 사거리 증대 연구)

  • Kim, Jinseok
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.49-55
    • /
    • 2020
  • A goal of improving projectile is to increasing achievable range. The shape of a projectile is generally selected on the basis of combined aerodynamics and structural considerations. The choice of body, nose and boattail shape has a large effect on aerodynamic design. One of the main design factors that affect projectile configuration is aerodynamic drag. The aerodynamic drag refers to the aerodynamic force that acts opposite to the relative motion of a projectile. An investigation was made to predict the effects of nose, boattail and body shapes on the aerodynamic characteristics of projectiles using a semi-empirical technique. A parametric study is conducted which includes different projectile geometry. Performance predictions of achievable range are conducted using a trajectory simulation model. The potential of extending the range of a projectile using optimization of projectile configuration is evaluated. The maximum range increase is achieved due to the combination of optimal body shapes.

Analytic study of a new conceptual propulsion device for ships

  • Muscia, Roberto;Sciuto, Giacomo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • In this work the possibility of obtaining a rectilinear motion of bodies partially or totally submerged without using propellers is evaluated. The system propulsion is based on a pair of counter rotating masses that generate the thrust. The fluid-body system has been schematized in order to carry out a very simple model. Using this model an evaluation of the body motion along a longitudinal direction was performed. The motion equations of the system were written and integrated. The external forces applied to the body depend on its velocity in relation to the water. These forces were obtained by fluid dynamic simulations. Regarding the mechanical configuration suggested, the results obtained show that a certain displacement of the body along a fixed direction is obtainable.

A Numerical Simulation for Contractive and Dilative Periodic Motion on Axisymmetric Body

  • Kim, Moon-Chan
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Numerical simulation for the axisymmetric body with contractive and dilative periodic motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by the contractive and dilative motion of axisymmetric body. An axisymmetric code is developed with unstructured grid system for the simulation of complicated motion and geometry. It is validated by comparing with the results of Stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n$ = 1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamics performance according to variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Manipulability analysis of the weight lift (역도 드는 동작의 조작도 해석)

  • 원경태;하인수;이지홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1281-1284
    • /
    • 1997
  • In this article, the configuration of weight lifer is analyzed using manipulibility polytope. After modeling body as 7-link redundant robot, optimal joint angles during first stage are searched by dynamic programmi technique and compared with standard reference data.

  • PDF

THE IMAGE CONFIGURATION OF MICRO LENSING WITH AN EXTENDED SOURCE

  • Chang, Kyong-Ae
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 1988
  • This study presents the specific rule governing the image configurations of an extended source for micro lensing of the two body gravitational lens system developed by Chang and Refsdal (1979). Various topological situations of a source are considered in relation to the regions bounded by the so-called critical curves.

  • PDF

Flow Visualization Study on Vortices over a Stealth UCAV Configuration (스텔스 무인전투기 형상의 와류 거동에 대한 흐름가시화 연구)

  • Kang, Seung-Hee;Lee, Do-Kwan;Hyun, Jae-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.467-473
    • /
    • 2007
  • Flow visualization study to qualitatively define the flow field over a stealth UCAV(Uninhabited Combat Air Vehicle) configuration in a water tunnel has been conducted to clarify the basic aerodynamic performance. The test was performed at freestream velocity of 12.7 cm/sec which was corresponding to a Reynolds number of $1.4{\times}10^4$ based on mean aerodynamic chord. The development and breakdown of vortices illuminated by using dye were compared to the previous force and moment data. It was shown that the effect of the vortices generated by the main-body and junction are dominant in the low angle-of-attack region. However, in the high angle-of-attack region, the vortex generated by the fore-body mainly influenced the aerodynamic performance of the model.

Signal processing of accelerometers for motion capture of human body (인체 동작 인식을 위한 가속도 센서의 신호 처리)

  • Lee, Ji-Hong;Ha, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.961-968
    • /
    • 1999
  • In this paper we handle a system that transform sensor data to sensor information. Sensor informations from redundant accelerometers are manipulated to represent the configuration of objects carrying sensors. Basic sensor unit of the proposed systme is composed of 3 accelerometers that are aligned along x-y-z coordination axes of motion. To refine the sensor information, at first the sensor data are fused by geometrical optimization to reduce the variance of sensor information. To overcome the error caused from inexact alignment of each sensor to the coordination system, we propose a calibration technique that identifies the transformation between the coordinate axes and real sensor axes. The calibration technique make the sensor information approach real value. Also, we propose a technique that decomposes the accelerometer data into motion acceleration component and gravity acceleration component so that we can get more exact configuration of objects than in the case of raw sensor data. A set of experimental results are given to show the usefulness of the proposed method as well as the experiments in which the proposed techniques are applied to human body motion capture.

  • PDF

Optimum Design of Trimming Line by One-Step Analysis for Auto Body Parts (역해석을 이용한 차체 부재의 트리밍라인 최적설계)

  • Bao, Y.D.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.49-54
    • /
    • 2006
  • During most of manufacturing processes of auto-body panels, the trimming line should be designed in advance prior to flanging. It is an important task to find a feasible trimming line to obtain a precise final part shape after flanging. This paper proposes a new fast method to find feasible trimming line based on one-step analysis. The basic idea of the one-step analysis is to seek for the nodal positions in the initial blank from the final part, and then the distribution of strain, stress and thickness in the final configuration can be calculated by comparing the nodal position in the initial blank sheet with the one of the final part. The one-step analysis method is able to predict the trimming line before flanging since the desired product shape after flanging can be defined from the final configuration and most of strain paths are simple during the flanging process. Finally, designers can obtain a discrete trimming line from the boundary of the developed meshes after one-step analysis and import it into CAD system in the early design stage. The proposed method has been successfully applied to two basic curve flanging processes demonstrating many advantages.

  • PDF

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.