• Title/Summary/Keyword: body architecture

Search Result 727, Processing Time 0.026 seconds

Simulation of Body Motion Caused by a Solitary Wave using the FDS-HCIB Method (FDS-HCIB법을 이용한 고립파에 의한 물체 운동 모사)

  • Shin, Sangmook;Kim, In Chul;Kim, Yong Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.265-273
    • /
    • 2014
  • Wave-body interaction is simulated using a developed code based on the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method. A free surface is captured as a moving contact discontinuity within a fluid domain and an approximated Riemann solver is used to estimate the inviscid flux across the discontinuity. Immersed boundary nodes are identified inside an instantaneous fluid domain near a moving body, then dependent variables are reconstructed at those immersed boundary nodes based on interpolation along local normal lines to the boundary. Free surface flows around an oscillating cylinder are simulated and the computed wave elevations are compared with other reported results. The generation of a solitary wave by a moving wave-maker is simulated and the time histories of wave elevations at two different points are compared with other results. The developed code is applied to simulate body motion of an elastically mounted circular cylinder as a solitary wave passes the body. The force acting on an elastically mounted cylinder is compared with the force acting on a fixed cylinder. Grid independency of the computed body motion is established based on a comparison of results using three different-size grids.

Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins (제어핀이 달린 수중 물체의 공동 수치해석)

  • Kim, Hyoung-Tae;Choi, Eun-Ji;Knag, Kyung-Tae;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.

Flow structures around a three-dimensional rectangular body with ground effect

  • Gurlek, Cahit;Sahin, Besir;Ozalp, Coskun;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.345-359
    • /
    • 2008
  • An experimental investigation of the flow over the rectangular body located in close proximity to a ground board was reported using the particle image velocimetry (PIV) technique. The present experiments were conducted in a closed-loop open surface water channel with the Reynolds number, $Re_H=1.2{\times}10^4$ based on the model height. In addition to the PIV measurements, flow visualization studies were also carried out. The PIV technique provided instantaneous and time-averaged velocity vectors map, vorticity contours, streamline topology and turbulent quantities at various locations in the near wake. In the vertical symmetry plane, the upperbody flow is separated from the sharp top leading edge of the model and formed a large reverse flow region on the upper surface of the model. The flow structure downstream of the model has asymmetric double vortices. In the horizontal symmetry plane, identical separated flow regions occur on both vertical side walls and a pair of primary recirculatory bubbles dominates the wake region.

Design and Implementation of Depth Image Based Real-Time Human Detection

  • Lee, SangJun;Nguyen, Duc Dung;Jeon, Jae Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.212-226
    • /
    • 2014
  • This paper presents the design and implementation of a pipelined architecture and a method for real-time human detection using depth image from a Time-of-Flight (ToF) camera. In the proposed method, we use Euclidean Distance Transform (EDT) in order to extract human body location, and we then use the 1D, 2D scanning window in order to extract human joint location. The EDT-based human extraction method is robust against noise. In addition, the 1D, 2D scanning window helps extracting human joint locations easily from a distance image. The proposed method is designed using Verilog HDL (Hardware Description Language) as the dedicated hardware architecture based on pipeline architecture. We implement the dedicated hardware architecture on a Xilinx Virtex6 LX750 Field Programmable Gate Arrays (FPGA). The FPGA implementation can run 80 MHz of maximum operating frequency and show over 60fps of processing performance in the QVGA ($320{\times}240$) resolution depth image.

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • PARK JONC-CHUN;KANG DAE-HWAN;CHUN HO-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.

Numerical Simulation of 3D Free-Surface Flows by Using CIP-based and FV-based Methods

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.136-143
    • /
    • 2011
  • In this paper, three-dimensional free-surface flows are simulated by using two different numerical methods, the constrained interpolation profile (CIP)-based and finite volume (FV)-based methods. In the CIP-based method, the governing equations are solved on stationary staggered Cartesian grids by a finite difference method, and an immersed boundary technique is applied to deal with wave-body interactions. In the FV-based method, the governing equations are solved by applying collocated finite volume discretization, and body-fitted meshes are used. A free-surface boundary is considered as the interface of the multi-phase flow with air and water, and a volumeof-fluid (VOF) approach is applied to trace the free surface. Among many variations of the VOF-type method, the tangent of hyperbola for interface capturing (THINC) and the compressive interface capturing scheme for arbitrary meshes (CICSAM) techniques are used in the CIP-based method and FV-based method, respectively. Numerical simulations have been carried out for dam-breaking and wave-body interaction problems. The computational results of the two methods are compared with experimental data and their differences are observed.

Measurement of Velocity Field Change around Stern of LNG Carrier Double Body Model by Propeller (프로펠러에 의한 LNG 운반선 이중모형 선미의 속도변화 계측)

  • Kim, Byong-June;Choi, Soon-Ho;Kim, Hyoung-Tae;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.448-457
    • /
    • 2005
  • The experiment was performed at the large wind tunnel of the Chungnam National University to measure the velocity distribution around the stern of a Liquefied Natural Gas Carrier model. The data, mean velocity vectors of turbulent shear flows at the stern and near-wake including the propeller plane, were obtained by a five-hole Pilot tube for the double body model fixed inside the wind tunnel test section. The present result of the double body model shows a close agreement with the result of the lowing tank experiment performed by the KRISO for the same ship model. The characteristics of the LNG stern flow are discussed based on the measured velocity distribution. The data can be very useful for the validation of some numerical methods in computational fluid dynamics.

A Study on the Pattern of Domestic Literature Museum and the Space.Form Composition Characteristic - Focused on Gyeongsang-do region - (국내 문학관 건축의 유형과 공간.형태구성 특징에 관한 연구 - 경상도 지역을 중심으로 -)

  • Jang, Hoon-Ick
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.3
    • /
    • pp.69-77
    • /
    • 2011
  • This study considered the characteristic through the present state of domestic literature museum and grouping by type to help the understanding for domestic literature museum. And conducted a case study on Gyeongsang-do region literature museum to grasp the space form composition characteristic of literature museum. The result gained through these studies is as follows. First, grouping domestic literature museum by type, we can conduct the classification founded on location character, an exhibition writer, and the main body of erection and maintenance management. Second, the classification founded on location character of literature museum is able to be divided into the type of the house of writer's birth, a literary work, writing, and etc. Third, the classification founded on the number of exhibition writers can be divided into the type of independence, an individual pavilion, and integration. Fourthly, the classification founded on the main body of erection and management can be divided into the case in which a local self-governing body is wholly in charge of erection and management, a local government is in charge of erection but entrusts management to a corporate body, etc., a corporate body is in charge of erection and management, and a private person is in charge of erection and management. Fifthly, speaking of the characteristic by type of the Gyeongsang-do region literature museum, the classification founded on location has the type of the house of writer's birth the most, the classification founded on the number of exhibition writers has the type of independence the most, and the classification founded on the main body of erection and management has the most the type in which a local self-governing body is in charge of erection and management. Also, for the characteristic by space form, the case which expresses the character of Korean traditional architecture by form is many the most, and there are pieces of work to pursue shape beauty through the articulation of mass or molding manipulation and the change by space form through the proper combination of concreteness and abstraction as well.

Depth Controller Design for Submerged Body Moving near Free Surface Based on Adaptive Control (적응제어기법을 이용한 수면근처에서 운항하는 몰수체의 심도제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan;Yoon, Hyeon Kyu;Kim, Su Yong;Cho, Hyeonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.270-282
    • /
    • 2015
  • A submerged body moving near the free surface needs to maintain its attitude and position to accomplish missions. It is necessary to validate the performance of a designed controller before a sea trial. The hydrodynamic coefficients of maneuvering are generally obtained by experiments or computational fluid dynamics, but these coefficients have uncertainty. Environmental loads such as the wave exciting force and suction force act on the submerged body when it moves near the free surface. Thus, a controller for the submerged body should be robust to parameter uncertainty and environmental loads. In this paper, the six-degree-of-freedom equations of motions for the submerged body are constructed. The suction force is calculated using the double Rankine body method. An adaptive control method based on an artificial neural network and proportional-integral-derivative control are used for the depth controller. Simulations are performed under various depth and speed conditions, and the results show the effectiveness of the designed controller.

Investigation on the Generalized Hydrodynamic Force and Response of a Flexible Body at Different Reference Coordinate System (기준 좌표계에 따른 탄성체의 일반화 파랑 하중 및 응답에 대한 연구)

  • Heo, Kyeonguk;Choi, Yoon-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.348-357
    • /
    • 2021
  • In this paper, the generalized hydrodynamic force and response of a flexible body are calculated at different reference coordinate systems. We generalize the equation of motion for a flexible body by using the conservation of momentum (Mei et al., 2005). To obtain the equations in the generalized mode, two different reference coordinates are adopted. The first is the body-fixed coordinate system by a rigid body motion. The other is the inertial coordinate system which has been adopted for the analysis. Using the perturbation scheme in the weakly-nonlinear assumption, the equations of motion are expanded up to second-order quantities and several second-order forces are obtained. Numerical tests are conducted for the flexible barge model in head waves and the vertical bending is only considered in the hydroelastic responses. The results show that the linear response does not have the difference between the two formulations. On the other hand, second-order quantities have different values for which the rigid body motion is relatively large. However, the total summation of second-order quantities has not shown a large difference at each reference coordinate system.