• Title/Summary/Keyword: blue luminescence

Search Result 149, Processing Time 0.025 seconds

Characteristics of matrix OEL devices that fabricated by side-by-side methode (side by side 방법으로 제작한 matrix 유기 발광 소자의 발광특성)

  • Son, Chul-Ho;Yeo, Cheol-Ho;Shin, Kyung;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.366-369
    • /
    • 2001
  • In this study, the matrix Organic Electroluminescence (OEL) device, that was consisted of R,G,B pixels. We fabricated OEL devices by side by side methode and, used organic material Alq3 as green, DCM as red and Butyl PBD as blue ETL. We investigated the characteristic of brightness and current density for matrix OEL device. As the results, each color devices has minimum about $100cd/m^{2}$ brightness and maximum luminescence was $2500cd/m^2$ in green OEL device.

  • PDF

Mechanism of Energy Transfer and Improvement Moist Stability of BaMg$Al_{10}O_{17}$:$Eu^{2+}$, $Mn^{2+}$ Phosphor

  • Liu, Ru-Shi;Ke, Wei-Chih
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.235-238
    • /
    • 2009
  • BaMg$Al_{10}O_{17}$ (BAM) co-doped with $Eu^{2+}$ and $Mn^{2+}$ was synthesized in a solid-state reaction and their luminescence properties were investigated as functions of the concentrations of the sensitizer and activator. BAM:$Eu^{2+}$ had a broad blue emission band at 450 nm and BAM:$Mn^{2+}$ exhibited green emission at 514 nm. The energy transfer from $Eu^{2+}$ to $Mn^{2+}$ was mainly of the resonance-type via an electric dipole-quadrupole interaction. Additionally, the addition of various fluxes such as $AlF_3$ and $BaF_2$ in the synthesis improves the moist and thermal stability. This is particularly important for the phosphor in white light emitting diodes (LEDs).

  • PDF

Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Films Prepared by Pulsed Laser Deposition (펄스 레이저 증착법으로 성장된 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구)

  • 김종훈;전경아;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.75-78
    • /
    • 2002
  • Si thin films on p-type (100) Si substrate have been prepared by a pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films with the variation of the annealing temperature.

Characteristics of matrix OEL devices that fabricated by side-by-side methode (side by side 방법으로 제작한 matrix 유기 발광 소자의 발광특성)

  • Son, Chul-Ho;Yeo, Cheol-Ho;Shin, Kyung;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.366-369
    • /
    • 2001
  • In this study, the matrix Organic Electroluminescence (OEL) device, that was consisted of R,G,B pixels. We fabricated OEL devices by side by side methode and, used organic material Alq3 as green, DCM as red and Butyl PBD as blue ETL. We investigated the characteristic of brightness and current density for matrix OEL device. As the results, each color devices has minimum about 100 cd/㎡ brightness and maximum luminescence was 2500cd/㎡ in green OEL device

  • PDF

Synthesis and Properties of Ca8Gd2(PO4)6O2 Nano-Crystalline Structures

  • Bharat, L. Krishna;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.286.1-286.1
    • /
    • 2013
  • Nowadays, the glare towards the light-emitting diode (LED) lighting source has much attention due to its eco-friendly nature, reduced energy consumption, and low CO2 emission. LEDs can show versatile colors by changing the composition ratio of semiconductors. Phosphors re-emit light by absorbing light from LED, which is the key factor for emission. The endeavor to make replica of natural white light is increasing day by day. Industrially, blue LED chip crowned with a yellow phosphor coated lens gives low quality white light. Newly, many researchers are introducing modern approaches, adding red phosphor to the yellow phosphor to increase the quality of white light. Here, we synthesized structurally and chemically stable europium doped oxyapatite Ca8Gd2(PO4)6O2 nano-crystalline structures by a hydrothermal method. The ultrafine structures were formed due to the effect of ethylenediaminetetraacetic acid, which is confirmed by the transmission electron microscope images. The structural properties were analyzed using the X-ray diffraction patterns.

  • PDF

Development on the Digital Candle Using LED (발광다이오드를 이용한 디지틀 캔들 개발)

  • So, Byung-Moon;Kang, Sung-Jun;Oh, Sung-Hoon;Lee, Dong-Whee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4291-4295
    • /
    • 2010
  • This paper presents a LED lighting decoration system with a LED candle color control that can independently change its color. The proposed processing was applied to the control of a LED candle that is composed of red, green, blue(RGB) LEDs. In order to go our of use switching device, we developed the LED candle drived luminescence and we will comercialize the result.

Luminescence properties of $ZnGa_{2}O_{4}$ based phosphors

  • Singh Binod Kumar;Ryu Hojin;Chang Ho-Jung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.35-39
    • /
    • 2005
  • Phosphor powders of zinc gal late added with Mg and rare-earth elements were prepared by sol id state reaction to improve luminescent properties. Green emitting $ZnMnGa_{2}O_{4}$ reached maximum intensity at Mn=0,005 mole$\%$ and further improvement was achieved by addition of $Mg^{2+}$. Tm, Mg-added zinc gallate phosphor exhibited a strong blue band emission, peaking at about 420 nm with the maximum intensity at the concentration of 0.003 mole$\%$ Mg and 0.015 mole$\%$ Tm. Deepening of the potential wells of the ground and excited states was suggested to be the cause for the enhancement in emission intensity at optimal doping of Mg and Tm.

  • PDF

Effect of Si-doping on the luminescence properties of InGaN/GaN green LED with graded short-period superlattice

  • Cho, Il-Wook;Lee, Dong Hyun;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.1-280.1
    • /
    • 2016
  • Generally InGaN/GaN green light emitting diode (LED) exhibits the low quantum efficiency (QE) due to the large lattice mismatch between InGaN and GaN. The QE of InGaN-based multiple quantum wells (MQWs) is drastically decreased when an emission wavelength shifts from blue to green wavelength, so called "green gap". The "green gap" has been explained by quantum confined Stark effect (QCSE) caused by a large lattice mismatch. In order to improve the QE of green LED, undoped graded short-period InGaN/GaN superlattice (GSL) and Si-doped GSL (SiGSL) structures below the 5-period InGaN/GaN MQWs were grown on the patterned sapphire substrates. The luminescence properties of InGaN/GaN green LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensity of SiGSL sample measured at 10 K shows stronger about 1.3 times compared to that of undoped GSL sample, and the PL peak wavelength at 10 K appears at 532 and 525 nm for SiGSL and undoped GSL, respectively. Furthermore, the PL decay of SiGSL measured at 10 K becomes faster than that of undoped GSL. The faster decay for SiGSL is attributed to the increased wavefunction overlap between electron and hole due to the screening of piezoelectric field by doped carriers. These PL and TRPL results indicate that the QE of InGaN/GaN green LED with GSL structure can be improved by Si-doping.

  • PDF

Effects of Yb3+/Er3+ Ratios on the Down- and Up-Conversion Luminescence of YNbO4:Yb3+/Er3+ (Yb3+/Er3+ 비가 YNbO4:Yb3+/Er3+의 하향 및 상향전환 발광 특성에 미치는 영향)

  • Park, Jung Hye;Ahn, Wonsik;Lee, Eun Young;Kim, Young Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.475-479
    • /
    • 2015
  • $YNbO_4:Yb^{3+}/Er^{3+}$ is synthesized using a solid-state reaction process with a LiCl flux. The effects of the Er/(Yb+Er) ratios ($R_{Er}$) on the up-conversion (UC) and down-conversion (DC) spectra are investigated. The XRD data confirm that the $Yb^{3+}$ and $Er^{3+}$ ions are fully substituted for the $Y^{3+}$ sites. The UC emission spectra activated by 980 nm consists of green and red emission bands, which originate from the $Er^{3+}$ ions through an energy transfer (ET) process from $Yb^{3+}$ to $Er^{3+}$. The UC emission intensity depends on the $R_{Er}$ value, and the findings demonstrate that $R_{Er}{\leq}0.14$ is suitable for an effective UC process. The DC emission spectra under 269 nm radiation of the synthesized powders exhibits not only a strong blue emission assigned to the $[NbO_4]^{3-}$ niobates, but also green peaks that originate from the $Er^{3+}$ ions through an ET process between $[NbO_4]^{3-}$ and $Er^{3+}$.

Luminescence Characteristics of Blue Phosphor and Fabrication of a UV-based White LED (UV 기반 백색 LED용 청색 형광체의 발광특성 및 백색 LED 제조)

  • Jung, Hyungsik;Park, Seongwoo;Kim, Taehoon;Kim, Jongsu
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.216-220
    • /
    • 2014
  • We have synthesized a $CaMgSi_2O_6:Eu^{2+}$ blue phosphor via a solid-state reaction method. The $CaMgSi_2O_6:Eu^{2+}$ phosphor has monoclinic structure with a space group of C2/c (15), and an emission band peaking at 450 nm (blue) due to the $4f^7-4f^65d$ transition of the $Eu^{2+}ion$. The emission intensity at $100^{\circ}C$ is 54% of the value at room temperature. A white LED was fabricated by integrating a UV LED (400 nm) with our blue phosphor plus two commercial green and red phosphors. The white LED shows a color temperature of 3500 K with a color rendering index of 87 (x = 0.3936, y = 0.3605), and a luminous efficiency of 18 lm/W. The white LED shows a luminance maintenance of 97% after operation at 350 mA for 400 hours at $85^{\circ}C$.