• Title/Summary/Keyword: blood characteristic

Search Result 387, Processing Time 0.024 seconds

Simulation of the Blood Pressure Estimation Using the Artery Compliance Model and Pulsation Waveform Model

  • Jeon, Ahyoung;Ro, Junghoon;Kim, Jaehyung;Baik, Seongwan;Jeon, Gyerok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, the artery's compliance model and the pulsation waveform model was proposed to estimate blood pressure without applying HPF (High Pass Filter) on signal measured by the oscillometric method. The method proposed in the study considered two ways of estimating blood pressure. The first method of estimating blood pressure is by comparing and analyzing changes in pulsation waveform's dicrotic notch region during each cardiac period. The second method is by comparing and analyzing morphological changes in the pulsation waveform during each cardiac period, which occur in response to the change in pressure applied on the cuff. To implement these methods, we proposed the compliance model and the pulsation waveform model of the artery based on hemodynamic theory, and then conducted various simulations. The artery model presented in this study only took artery's compliance into account. Then, a pulsation waveform model was suggested, which uses characteristic changes in the pulsation waveform to estimate blood pressure. In addition, characteristic changes were observed in arterial volume by applying artery's pulsation waveform to the compliance model. The pulsation waveform model was suggested to estimate blood pressure using characteristic changes of the pulsation waveform in the arteries. This model was composed of the sum of sine waves and a Fourier's series in combination form up to 10th harmonics components of the sinusoidal waveform. Then characteristic of arterial volume change was observed by inputting pulsation waveform into the compliance model. The characteristic changes were also observed in the pulsation waveform by mapping the arterial volume change in accordance with applied cuff's pressure change to the pulsation waveform's change according to applied pressure changes by cuff. The systolic and diastolic blood pressures were estimated by applying positional change of pulsation waveform's dicrotic notch region.

An estimating method for systolic blood pressure by using pulse transit time and physical characteristic parameters (맥파전달시간과 신체특징 파라미터를 이용한 수축기 혈압측정)

  • Lee Sangmin;Park Eun Kyung;Kim In Young;Kim Sun I.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.41-46
    • /
    • 2005
  • In this paper, we proposed noninvasive and continous measurement of blood pressure using pulse transit time(PTT) and physical characteristic parameters and verified its clinical effectiveness. PTT can be obtained by electrocardiogram and phtoplethysmogram. There are many researches for estimating blood pressure using PTT which can be used for individual. However, it is not enough for extracting general regression equation which can estimate blood pressure for unspecified people. In this study, we suggested the regression equatin using PTT and physical characteristic parameters related to blood pressure and did measure blood pressure of many people. we compared the performance between two methods. As the results, we knew that the regressin model using PTT combined with physical characteristic parameters can estimate blood pressure more acurately and is closer to American National Standards Institute of the Association of the Advancement of Medical Instrument(ANSI/AAMI).

Development of Blood Pressure Estimation Algorithm Using Variable Characteristic Ratios on Oscillometric Method (진동법에서 가변 특성 비를 이용한 혈압 추정 알고리즘의 개발)

  • Shin, Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.510-515
    • /
    • 2009
  • In this paper, variable characteristic ratio algorithm based on oscillometric method is proposed to enhance the accuracy of blood pressure measurement. We combined the slope-based approach and fuzzy inference technique to change the characteristic ratios of height-based method. The proposed algorithm was assessed on 255 measurements from 85 subjects and compared with the conventional height-based algorithm. The testing results showed that the developed algorithm achieved an overall grade A for both systolic and diastolic blood pressures according to the BHS protocol. And, mean standard deviation between the observers and the developed algorithm were 5.71mmHg and 6.29mmHg for systolic and diastolic pressures respectively, which also fulfilled the AAMI criteria. In conclusion, this algorithm was successfully developed and recommended for further clinical trials with the wider adult population.

Measuring Blood Pressure Using Oscillation Signal from an Automatic Sphygmomanometer (자동혈압계의 오실레이션 신호를 이용한 혈압 측정)

  • Kim, Dong-Jun;Kim, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1720-1724
    • /
    • 2012
  • This study describes an oscillometric-based blood pressure measuring algorithm by detecting turning points of oscillation signal from digitally filtered cuff signals of an automatic sphygmomanometer. The blood pressure measuring algorithm uses a characteristic ratios method from the turning points. The accurate values of the systolic/diastolic blood presures(SBP/DBP) are calculated using the peaks in the ranges of characteristic ratios. Performances of the proposed algorithm and four automatic sphygmomanometers are compared with the mercury manometer(manual type sphygmomanometer), regarding the SBP and DBP values of manual sphygmomanometer as the reference values. The performance test showed the proposed algorithm revealed the best results in errors and a statistical analysis. Therefore this algorithm can be usable in any automatic sphygmomanometers.ssure states. This may be compromising results for subject-independent sensibility evaluation using EEG signal.

Separation of Blood Cell and Blood Plasma Using Microstructure (미세구조물을 이용한 혈구/혈장 분리)

  • Kim, Duckiong;Seo, Jee-Hoon;Son, Sang Uk;Kim, Jae Yun;Yoon, Eui Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.743-747
    • /
    • 2004
  • In this study, micro blood separators capable of separating blood cell and blood plasma using microstructure are fabricated and their feasibility and separation performance are evaluated. Test results show the possibility of separating blood cell and blood plasma using microstructure. To improve separation performance and anti-clogging characteristic, technical points of tested micro blood separators are discussed and improved designs are presented.

  • PDF

A Vascular Characteristic Index of Blood Pressure Variation using the Pulse Wave Signal

  • Kim, Gi-Ryon;Jung, Dong-Keun;Ye, Soo-Young;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.213-219
    • /
    • 2008
  • Pulse waves continuously change with respect to the characteristics and status of the cardiovascular system and in relation to the blood pressure (BP) and the pulse wave velocity (PWV). Monitoring the vascular condition by analyzing the variations in pulse waveforms has been used to diagnose vascular disorders and in drug treatment of arteriosclerosis and peripheral circulatory obstruction. In this paper, we investigated the vascular characteristic index with regard to the BP and classified by pulse wave signals. The pressure pulse wave and photoplethysmography (PPG) were measured simultaneously while subjects exercised, producing changes in the BP, to analyze the variation in the vascular characteristic index. We investigated the correlation between the BP and vascular characteristic index with regard to the classification methods of the pulse wave. The reflection index (RI) and vascular stiffness index were correlated with the diastolic BP, but no correlation was found between these parameters and the systolic BP. These results suggest the possibility of estimating BP through simple measurements of pulse waves.

Implementation of The Fluid Circulation Blood Pressure Simulator (유체 순환 혈압 시뮬레이터의 구현)

  • Kim, C.H.;Lee, K.W.;Nam, K.G.;Jeon, G.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

A Study on Implemetation of Non-invasive Blood Pressure (비침습적 혈압 측정 시스템 구현에 관한 연구)

  • 노영아;이종수;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.451-454
    • /
    • 2000
  • Invasive methode and Non-invasive methode are used in blood pressure measurement. The Invasive methode can Set the correct measured blood pressure but, it has patient feels uncomfortable. So most of cases use Non-invasive methode. The Oscillometric method is commonly apply to modem electric sphygmomanometer and using various algorithm. In this paper describe about a algorithm it control and to determinate the cuff pressure, and filtering that data for measure the blood pressure. The communicating with personal computer can pressure deflation is by Solenoid valve and it uses RS-232 system in packet communication. The main using algorithm for blood pressure measurements are maximum amplitude algorithm and oscillometric algorithm. MAA(maximum amplitude algorithm) has various measured oscillation it depend on patient's age, height, weight and arm circumference size. In this paper, 1 studied the various measured oscillation apply to characteristic ratio and can get the result of systolic blood pressure, diastolic blood pressure, mean blood pressure. It was not used same ratio to measuring oscillation. In the MAA(maximum amplitude algorithm), we hope for reduce the difference with the real blood pressure and the measured blood pressure, when it applied with various specific ratio.

  • PDF

Blood Pressure Simulation using an Arterial Pressure-volume Model

  • Yoon, Sang-Hwa;Kim, Jae-Hyung;Ye, Soo-Young;Kim, Cheol-Han;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • Using an arterial pressure-volume (APV) model, we performed an analysis of the conventional blood pressure estimation method using an oscillometric sphygmomanometer with computer simulation. Traditionally, the maximum amplitude algorithm (MAA) has been applied to the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected by the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPF) circuitry. Experimental errors result from these effects when estimating blood pressure. To determine an algorithm independent of the influence of waveform shapes and parameters of HPF, the volume oscillation of the APV model and the phase shift of the oscillation with fast Fourier transform (FFT) were tested while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg/s). The phase shift between ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were obtained from simulations performed on two different arterial blood pressure waveforms and one hyperthermia waveform.

In Vivo Measurements of Blood Flow in a Chicken Embryo Using Micro PIV Technique (유정란 배아 혈액유동의 in vivo 계측)

  • Yeo Chang-Sub;Han Kyu-Yeon;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.314-319
    • /
    • 2006
  • To analyze in-vivo blood flow characteristics in a chicken embryo, in-vivo experiment was carried out using micro-PIV technique. Because endothelial cells in blood vessels are subject to shear stress of blood flow, it is important to get velocity field information of the placental blood flow. Instantaneous velocity fields of an extraembryonic blood vessel using a high-speed camera and intravital microscope. The flow images of RBCs were obtained with a spatial resolution of $20\times20{\mu}m$ in the whole blood vessels. The mean velocity field data confirm that the blood flow does show non-Newtonian fluid characteristic. The blood in a branched vessel merged smoothly without any flow separation into the main blood vessel with the presence of a slight bump. This in-vivo micro-PIV measurement technique can be used as a powerful tool in various blood flow researches.