• Title/Summary/Keyword: block processing

Search Result 1,479, Processing Time 0.028 seconds

Efficient Tracking of Speech Formant Using Closed Phase WRLS-VFF-VT Algorithm

  • Lee, Kyo-Sik;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, we present an adaptive formant tracking algorithm for speech using closed phase WRLS-VFF-VT method. The pitch synchronous closed phase methods is known to give more accurate estimates of the vocal tract parameters than the pitch asynchronous method. However the use of a pitch-synchronous closed phase analysis method has been limited due to difficulties associated with the task of accurately isolating the closed phase region in successive periods of speech. Therefore we have implemented the pitch synchronous closed phase WRLS-VFF-VT algorithm for speech analysis, especially for formant tracking. The proposed algorithm with the variable threshold(VT) can provide a superior performance in the boundary of phone and voiced/unvoiced sound. The proposed method is experimentally compared with the other method such as two channel CPC method by using synthetic waveform and real speech data. From the experimental results, we found that the block data processing techniques, such as the two-channel CPC, gave reasonable estimates of the formant/antiformant. However, the data windows used by these methods included the effects of the periodic excitation pulses, which affected the accuracy of the estimated formants. On the other hand the proposed WRLS-VFF-VT method, which eliminated the influence of the pulse excitation by using an input estimation as part of the algorithm, gave very accurate formant/bandwidth estimates and good spectral matching.

  • PDF

Segmentation and Tracking Algorithm for Moving Speaker in the Video Conference Image (화상회의 영상에서 움직이는 화자의 분할 및 추적 알고리즘)

  • Choi Woo-Young;Kim Han-Me
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.54-64
    • /
    • 2002
  • In this paper, we propose the algorithm for segmenting the moving speaker and tracking its movement in the video conference image. For real time processing, we simplify the algorithm which is processed in the order of the segmenting and the tracking step. In the segmenting step, the speaker object is segmented from the image by using both the motion information obtained from the difference method and the illuminance information of image. The reference mask image is created from segmented speaker object. In the tracking step, the moving speaker is tracked by using simple block matching algorithm of which computation time is reduced by discarding the blocks which are classified into the unuseful blocks. In the simulation, we can get the good result of segmenting and tracking the moving speaker by applying the proposed algorithm to several test images.

  • PDF

Implementation of parallel blocked LU decomposition program for utilizing cache memory on GP-GPUs (GP-GPU의 캐시메모리를 활용하기 위한 병렬 블록 LU 분해 프로그램의 구현)

  • Kim, Youngtae;Kim, Doo-Han;Yu, Myoung-Han
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.41-47
    • /
    • 2013
  • GP-GPUs are general purposed GPUs for numerical computation based on multiple threads which are originally for graphic processing. GP-GPUs provide cache memory in a form of shared memory which user programs can access directly, unlikely typical cache memory. In this research, we implemented the parallel block LU decomposition program to utilize cache memory in GP-GPUs. The parallel blocked LU decomposition program designed with Nvidia CUDA C run 7~8 times faster than nun-blocked LU decomposition program in the same GP-GPU computation environment.

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).

A Newly Designed Contact Profiler for Microstructure (새로운 구조의 접촉식 미세구조 프로필러)

  • Choi, Dong-Jun;Choi, Jai-Seong;Choi, In-Mook;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2002
  • A simple and low cost stylus profiler made of ferrite cores is developed. The devised profiler consists of a contact probe, a measuring transducer, a signal processing unit, and a motorized stage. The contact probe attached to 4-bar spring maintains sufficient stiffness to protect disturbances. An overlap-area type inductive position sensing system is selected as a measuring transducer, which has high sensitivity, repeatability and linearity. The transducer is composed of coil bundles and ferrite cores which have good electromagnetic characteristics in spite of low cost. The repeatability of the profiler with the proposed inductive sensing system is better than 50nm. Experimental results are shown that the proposed profiler can measure the line or 3D profile of an object with sub-micron features.

DSP Optimization for Rain Detection and Removal Algorithm (비 검출 및 제거 알고리즘의 DSP 최적화)

  • Choi, Dong Yoon;Seo, Seung Ji;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.96-105
    • /
    • 2015
  • This paper proposes a DSP optimization solution of rain detection and removal algorithm. We propose rain detection and removal algorithms considering camera motion, and also presents optimization results in algorithm level and DSP level. At algorithm level, this paper utilizes a block level binary pattern analysis, and reduces the operation time by using the fast motion estimation algorithm. Also, the algorithm is optimized at DSP level through inter memory optimization, EDMA, and software pipelining for real-time operation. Experiment results show that the proposed algorithm is superior to the other algorithms in terms of visual quality as well as processing speed.

A Modified BCH Code with Synchronization Capability (동기 능력을 보유한 변형된 BCH 부호)

  • Shim, Yong-Geol
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.109-114
    • /
    • 2004
  • A new code and its decoding scheme are proposed. With this code, we can correct and detect the errors in communication systems. To limit the runlength of data 0 and augment the minimum density of data 1, a (15, 7) BCH code is modified and an overall parity bit is added. The proposed code is a (16, 7) block code which has the bit clock signal regeneration capability and high error control capability. It is proved that the runlength of data 0 is less than or equal to 7, the density of data 1 is greater than or equal to 1/8, and the minimum Hamming distance is 6. The decoding error probability, the error detection probability and the correct decoding probability are presented for the proposed code. It is shown that the proposed code has better error control capability than the conventional schemes.

Distribution Mapping and Local Analysis of Ciliary Beat Frequencies (세포의 섬모 운동 변화 분석을 위한 CBF 분포도 구성 및 국소적 분포 분석에 관한 연구)

  • Yi, W.J.;Park, K.S.;Min, Y.G.;Sung, M.W.;Lee, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.154-160
    • /
    • 1997
  • By their rapid and periodic actions, the cilia of the human respiratory tract play an important role in clearing inhaled noxious particles. Based on the automated image-processing technique, we studied ciliary beat frequency (CBF) objectively and quantitatively. Microscopic ciliary images were transformed into digitized gray ones through an image-grabber, and from these we extracted signals or CBF. By means of a FFT, maximum peak frequencies were detected as CBFs in each partitioned block or the entire digitized field. With these CBFs, we composed distribution maps visualiy showing the spatial distribution of CBFs. Through distribution maps of CBF, the whole aspects of CBF changes or cells and the difference of CBF of neighboring cells can be easily measured and detected. Histogram statistics calculated from the user-defined polygonal window can show the local dominant frequency presumed to be the CBF of a cell or a crust the region includes.

  • PDF

A Study on Intelligent On-line Tool Conditon Monitoring System for Turning Operations (선삭공작을 위한 지능형 실시간 공구 감시 시스템에 관한 연구)

  • Choe, Gi-Hong;Choe, Gi-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.22-35
    • /
    • 1992
  • In highly automated machining centers, intelligent sensor fddeback systems are indispensable on order to monitor their operations, to ensure efficient metal removal, and to initate remedial action in the event of accident. In this study, an on-line tool wear detection system for thrning operations is developed, and experimentally evaluated. The system employs multiple sensors and the signals from these sensors are processed using a multichannel autoegressive (AR) series model. The resulting output from the signal processing block is then fed to a previously tranied artificial neural network (multiayered perceptron) to make a final decision on the state of the cutting tool. To learn the necessary input/output mapping for tool wear detection, the weithts and thresholds of the network are adjusted according to the back propagation (BP) method during off-line training. The results of experimental evaluation show that the system works well over a wide range of cutting conditions, and the ability of the system to detect tool wear is improved due to the generalization, fault-tolearant and self-ofganizing properties of the neural network.

  • PDF

Numerical Study of Electrohydraulic Forming to Reduce the Bouncing in High Speed Forming Process (고속 성형 공정의 바운싱 현상을 줄이기 위한 액중 방전 성형의 해석적 연구)

  • Woo, M.A.;Noh, H.G.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.261-267
    • /
    • 2016
  • High-speed forming process is the forming technology that deforms the blank in a very short time, with the strain rate of the blank above 1000 s−1. Among many high-speed forming processes, electromagnetic forming (EMF) employs the Lorentz force when deforms the blank. Because of the high strain rate, the formability of the blank can be improved. However, when the blank is formed into rather complex shapes, it is bounced from the die and the wrinkles are generated. Therefore, electrohydraulic forming (EHF) is suggested in this study to reduce the bouncing problem of the blank. EHF is a high-speed forming that uses high voltage discharge in liquid. The shockwave resulting from the electric discharge propagates to the blank and it deforms the blank into the die. In this study, two high-speed forming processes, EMF and EHF were compared numerically with trapezoidal middle block die. This comparison showed that EMF cannot deform the blank into the die because of the bouncing, while EHF can overcome the bouncing problem and deform the blank into the die shape successfully.