• Title/Summary/Keyword: block fading

Search Result 166, Processing Time 0.024 seconds

Performance Improvement of WCDMA Downlink Systems Using Space Time Block Coding (STBC를 이용한 WCDMA 순방향 링크 시스템의 성능개선)

  • 박정숙;박중후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.423-428
    • /
    • 2004
  • High-data rate and high speed communication techniques are required for wireless mobile communication systems to provide multimedia services. A multiple antenna technology may be used to meet this demand. In this paper, a method for performance improvement of a WCDMA downlink system using space time block coding is proposed in quasi-static Rayleigh fading channels. The proposed receiver uses the cross correlation matrix obtained by each finger corresponding to multi paths. To obtain maximum diversity gain, the inverse of cross correlation matrix and the Hermitian matrix of the channel matrix for each path arc computed, and then applied to received signals. Various simulation results show that the proposed receiver outperforms a conventional receiver in Rayleigh fading channels.

Error rate performance of DS / SSMA system in multipath fading channel (다경로 페이딩 채널에서 DS/SSMA 시스템의 오율특성)

  • 박성경;송왕철;강창언
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.66-76
    • /
    • 1995
  • In this paper, the error rate performance of DS/SSMA system in multipath fading channel is calculated by computer simulation. At first, the multipath fading channel is modeled with TDL(Tap Delay Line) model. The characteristics of channels, including multipath fading effects and error pattern, are examined by doppler frequency and signal bandwidth, and time spread variation. Using the multipath fading channel model, the error rateperformance of block code and convolutional code is compared, thus the coding sys- tem is applied to the DS / SSMA system. The BER results of DS / SSMA system show that the proposed receiver gives about 2~3[dB] improve- ment compared with the conventional receiver.

  • PDF

On Practical Issue of Non-Orthogonal Multiple Access for 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.67-72
    • /
    • 2020
  • The fifth generation (5G) mobile communication has an impact on the human life over the whole world, nowadays, through the artificial intelligence (AI) and the internet of things (IoT). The low latency of the 5G new radio (NR) access is implemented by the state-of-the art technologies, such as non-orthogonal multiple access (NOMA). This paper investigates a practical issue that in NOMA, for the practical channel models, such as fading channel environments, the successive interference cancellation (SIC) should be performed on the stronger channel users with low power allocation. Only if the SIC is performed on the user with the stronger channel gain, NOMA performs better than orthogonal multiple access (OMA). Otherwise, NOMA performs worse than OMA. Such the superiority requirement can be easily implemented for the channel being static or slow varying, compared to the block interval time. However, most mobile channels experience fading. And symbol by symbol channel estimations and in turn each symbol time, selections of the SIC-performing user look infeasible in the practical environments. Then practically the block of symbols uses the single channel estimation, which is obtained by the training sequence at the head of the block. In this case, not all the symbol times the SIC is performed on the stronger channel user. Sometimes, we do perform the SIC on the weaker channel user; such cases, NOMA performs worse than OMA. Thus, we can say that by what percent NOMA is better than OMA. This paper calculates analytically the percentage by which NOMA performs better than OMA in the practical mobile communication systems. We show analytically that the percentage for NOMA being better than OMA is only the function of the ratio of the stronger channel gain variance to weaker. In result, not always, but almost time, NOMA could perform better than OMA.

Distributed SFBC for Relay-Assisted Single Carrier Transmission over Uplink Fast Fading Channels (상향 링크 고속 페이딩 채널에서의 중계기 기반 단일 반송파 전송을 위한 분산 주파수 공간 블록 부호화 기법)

  • Seol, Dae-Young;Kwon, Ui-Kun;Im, Gi-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.25-32
    • /
    • 2007
  • This paper proposes a distributed space-frequency block code (SFBC) for relay-assisted single carrier frequency-domain equalization (SC-FDE). The proposed technique achieves spatial diversity gain over fast fading channels without the complexity of multiple antennas. The mobile equipment of the proposed system has a very simple transmitter structure with constant amplitude transmit sequences, which is desirable especially for uplink communications. In order to obtain spatial diversity, the transmit sequence of relay is efficiently generated in the time domain, which is equivalent to the SFBC. Further, efficient implementation of relay and destination structures is also presented. Extensive simulation results show that the proposed system significantly outperforms the distributed space-time block code (D-STBC) SC-FDE over fast fading channels.

A Tradeoff of Multiplexing Gain and Pilot Overhead in Multi-User OFDM Virtual MIMO Uplink Systems (상향링크 다중 사용자 기반 가상적 MIMO-OFDM 시스템의 파일럿 오버헤드와 다중화 이득의 트레이드오프)

  • Ran, Rong;Cho, Sung-Yoon;Kim, Yo-Han;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, we derive the optimum number of users which can maximize the information theoretic sum capacity in multiuser OFDM virtual MIMO uplink system. In which, there are multiple antennas at the base station and a number of users with single transmit antenna. Pilot-assisted channel state estimation is assumed for a block fading channel and time-varying fading channel. We analyze the tradeoff between the multiplexing gain and pilot overhead especially in low SNR regime and conclude that the optimum number of users is min ($N_r$,LT/2 ) in frequency nonselective block fading channel and approximately equal to min ($N_r$, ${\lfloor}{\sqrt{LT+1}}-1{\rfloor}$) in time varying fading channel. assuming the same pilot and signal pwoer.

  • PDF

Comparative Performance of Differential Space-Time Block Codes Over Time-Selective Fading Channels (시변 페이딩 채널에서 검파방식에 따른 차분 공간-시간 블록 부호의 성능 비교)

  • Kang, Sung-Ho;Kim, Young-Ju;Lee, In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.356-361
    • /
    • 2006
  • We present the performance of differential space-time block decoders. which does not require the channel state information. We suggest the structure of the multiple blocks differential space time decoders. which does not require the channel state information, and analyze the Performances. In quasi-static flat fading channels. the Performance of multiple blocks differential detection (MD-STC) outperforms that of 2 blocks(D-STC) by 1.5dB. But in the time-selective fading channels due to Doppler frequency $(f_d)$, the performance of MD-STC degrades as the vehicular speed is greater than 200km/hr in 802.16e systems, where the data transmission rate is 144kbps.

Block-Ordered Layered Detector for MIMO-STBC Using Joint Eigen-Beamformers and Ad-Hoc Power Discrimination Scheme

  • Lee Won-Cheol
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2006
  • Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.

High-rate LDPC Coded OFDM System for Image Transmission over Rayleigh Fading Channel (레일리 페이딩 채널에서 이미지 전송을 위한 고속 LDPC부호를 적용한 OFDM 시스템)

  • Choi, Sang-Min;Moon, Byung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.233-235
    • /
    • 2005
  • As a class of block codes, LDPC code with any desired code rate and code length is easily constructed. In OFDM system high data transmission is possible, In this paper, we examined the performance of four high-rate(0.75, 0.8, 0.889, 09412) LDPC coded OFDM in image transmission over Rayleigh fading channel. The high-rate of 0.9412 LDPC coded OFDM system obtained about 12dB gain over the OFDM at BER of $10^{-3}$ over Rayleigh fading channel. Also, the PSNR of code rate 0.9412 LDPC coded OFDM system at SNR=10dB is given by 18.8047dB where uncoded OFDM system gives 9.7303 dB.

  • PDF

Block Error Probability of NFSK Signals in a Impulse Noise and Nakagami Fading Channel (임펄스 잡음과 나카가미 페이딩 채널에서 NFSK 신호의 블럭 에러 성능)

  • 이양선;김지웅;강희조
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.311-315
    • /
    • 2000
  • 본 논문에서는 임펄스 잡음과 나카가미 페이딩 채널에서 블록 에러 NFSK 시스템을 제안하고, 이의 성능을 구하였다. 블록 에러 확률을 구하는데 있어서 나카가미 채널 페이딩 속도(즉, slow fading, fast fading)를 고려하여 임펄스 잡음지수의 변화에 따른 성능을 구하였다. 블록 에러의 성능을 개선시키는 방안으로 다이버시티 기법과 에러정정 부호화 기법을 적용하여 다이버시티 수(L), 에러정정능력(M), 임펄스 잡음지수(A)를 함수로 하여 성능 개선이 커지고, 저속 페이딩 (임펄스 잡음지수 A=0.1, 1에서 3dB 개선)보다 고속 페이딩에서 (임펄스 잡음지수 A=0.1, 1에서 2~4dB 개선)의 성능개선 정도가 우수하였다. MRC 다이버시티 기법은 저속 페이딩에서 부호화 기법을 적용했을 때 보다 우수한 성능을 보이고 페이딩의 영향이 클 때 성능개선이 크게 이루어짐을 알 수 있었다.

  • PDF

Evaluation of Achievable Rate for Concatenated Fountain Codes in Wireless Channels (무선채널에서 결합 분수 부호들의 성취율 평가)

  • Asim, Muhammad;Choi, Goang Seog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.147-155
    • /
    • 2012
  • Fountain codes ensure reliability and robustness for time varying channels in wireless communication. In this paper, the concatenated fountain codes for AWGN and slow fading channels are investigated. Wireless system model, which includes the concatenated fountain code and modulation, is proposed. Maximum achievable rate is used for analyzing the performance of the system model for AWGN and fading channels. Belief Propagation (BP) algorithm is used for exploiting the soft information received at the decoder. Simulation results show that, concatenated fountain codes performs significantly better than that of a conventional Fountain codes with large packet lengths for higher Signal to Noise Ratio (SNR) in slow fading channels.