• Title/Summary/Keyword: block design

Search Result 3,025, Processing Time 0.036 seconds

Investigation on Behavior of Reinforced Segmental Retaining Walls (블럭식 보강토 옹벽의 거동 특성 연구)

  • 유충식;이광문
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Despite the frequent use of the soil-reinforced segmental retaining wall (SRW) system, the roles of the different components comprising the system, such as facing blocks, reinforcements, backfill, and block/backfill interface, are still not fully understood, and much still need to be investigated for more safe and economical design/analysis method. Therefore, this study was undertaken with the aim of understanding the effect of the shear strength of backfill material and the reinforcement stiffness on the behavior of SRW by using the finite element analysis. In the analysis the details of construction sequence and the SRW components were carefully modeled, and a parametric study was performed in order to investigate the effects of shear strength of backfill soil and reinforcement stiffness on the wall displacement and earth pressure, the vertical stress under the reinforced block, the reinforcement and block/reinforcement connection forces. Implications of the findings from this study to current design practices were discussed in detail.

  • PDF

A Study on the Thermal Design for A Signal Processor in the Micro-Wave Seeker (초고주파 탐색기 신호처리부의 방열설계에 관한 연구)

  • Lee, Won-Hee;Yu, Young-Joon;Kim, Ho-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This paper focuses on the thermal design of a signal processor in Micro-Wave Seeker. High temperature environment and ESS(Environmental Stress Screening) test condition should be considered in designing a signal processor. First, we performed the thermal analysis to know conditions under which a signal processor is thermally reliable. As a result of thermal analysis, we found that adopting heat transfer block to the thermally fragile components is most efficient, because the heat transfer block can control the thermal loads of the individual components. Next, we verified this solution by numerical simulation and experiment and concluded that thermal reliability of a signal processor can be achieved. Maximum temperature difference between numerical simulation and experiment is about $2^{\circ}C$.

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.

A Design of High Performance Operation Intra Predictor for H.264/AVC Decoder (H.264/AVC 복호기를 위한 고성능 연산처리 인트라 예측기 설계)

  • Jin, Xianzhe;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2503-2510
    • /
    • 2012
  • This paper proposes a parallel operation intra predictor for H.264/AVC decoder. In previous intra predictor design, common operation units were designed for 17 prediction modes in order to compute more effectively. However, it was designed by analyzing the equation applied to one pixel. So, there are four operation units for computing 16 pixels in a $4{\times}4$ block and they need four cycles. In this paper, the proposed intra predictor contains T3(Three Type Transform) operation unit for parallel operation. It divides 17 modes into 3 types to calculate 16 pixels of a $4{\times}4$ block in only one cycle and needs 16 cycles minimum in 16x16 block. As the result of the experiment, in terms of processing cycle, the performance of proposed intra predictor is 58.95% higher than the previous one.

Simulation of Contacts Between Wire Rope and Shell Plate of a Block for Shipbuilding Industry based on Multibody Dynamics (다물체계 동역학을 기반으로 한 와이어로프와 조선용 블록 외판 사이의 간섭 시뮬레이션)

  • Jo, A-Ra;Ku, Nam-Kug;Cha, Ju-Hwan;Park, Kwang-Phil;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.324-332
    • /
    • 2012
  • In this paper, a method for calculating the contact force and the frictional force caused by contacts between the wire rope and the rigid body is introduced based on multibody dynamics. And the method is applied to a simulation of contacts between the wire rope and the shell plate of a block that can occur during shipbuilding. The wire rope is composed of a number of lumped masses and the wire rope segments that connect the masses. After calculating the position of interference, we inserted a contact node into the wire rope. We then derived the equations of motion of the wire rope and the rigid body using augmented formulation based on multibody dynamics taking into account the constraints between the contact node and the rigid body. Using the equations, we were able to obtain the constraint force between the contact node and the rigid body, and calculate the contact force and the frictional force, based on which the position of the contact node was corrected. Finally, we applied our results to perform simulation of contacts between the wire rope and the shell plate of a block in order to verify the efficacy of the method proposed in this paper.

The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives

  • Tekce, Neslihan;Tuncer, Safa;Demirci, Mustafa
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.211-217
    • /
    • 2018
  • PURPOSE. To evaluate the effect of prolonged sandblasting on the bond durability of dual-cure adhesive resin cement to computer-aided design and computer-aided manufacturing (CAD/CAM) restoratives. MATERIALS AND METHODS. Nano-ceramic LAVA Ultimate and hybrid-ceramic VITA Enamic CAD/CAM blocks were used for this study. Each CAD/CAM block was sectioned into slabs of 4-mm thickness for the microtensile test (${\mu}TBS$) test and 2-mm thickness for the surface roughness test. Three groups were created according to the sandblasting protocols; group 1: specimens were sandblasted for 15 seconds, group 2: specimens were sandblasted for 30 seconds, and group 3: specimens were sandblasted for 60 seconds. After sandblasting, all specimens were luted using RelyX Ultimate Clicker. Half the specimens were subjected to ${\mu}TBS$ tests at 24 hours, and the other half were subjected to tests after 5000 thermocycles. Additionally, a total of 96 CAD/CAM block sections were prepared for surface roughness tests and scanning electron microscopy (SEM) evaluations. The Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance, and Dunn's post hoc test were used to compare continuous variables among the groups. RESULTS. At baseline, group 1, group 2, and group 3 exhibited statistically similar ${\mu}TBS$ results for LAVA. However, group 3 had significantly lower ${\mu}TBS$ values than groups 1 and 2 for VITA. After 5000 thermocycles, ${\mu}TBS$ values significantly decreased for each block (P<.05). CONCLUSION. It is important to perform controlled sandblasting because it may affect bond strength results. Sixty seconds of sandblasting disturbs the initial ${\mu}TBS$ values and the stability of adhesion of CAD/CAM restoratives to dual-cure adhesive resin cement for VITA Enamic.

Design of AMBA AX I Slave Unit for Pipelined Arithmetic Unit (파이프라인 구조 연산회로를 위한 AMBA AXI Slave 설계)

  • Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.712-713
    • /
    • 2011
  • In this paper, the AMBA AXI slave unit that can verify the pipelined arithmetic unit is proposed and the 2-stage 16-bit pipelined multiplier is introduced as design example. The proposed AXI slave unit consists of input buffer block memory, control registers, pipelined arithmetic unit, control unit, output buffer block memory, and AXI slave interface unit. The main operational procedures are divided into the following steps, such as burst-mode input data loading for the input buffer memory, programming of control registers, arithmetic operations for block data in the input buffer memory, and burst-mode output data unloading from output buffer memory to host processor. Because the proposed AXI slave unit is general structure, it can be efficiently applicable to AMBA AXI and AHB slave unit with pipelined arithmetic unit.

  • PDF

Configuration and Design of the Large Multi-Electromagnetic Shaking System (대형 멀티 전자기 가진 시스템의 구성 및 설계)

  • 우성현;김홍배;문상무;김영기;임종민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.618-622
    • /
    • 2004
  • The vibration test system of SITC(Satellite Integration and Test Center) at KARI(Korea Aerospace Research Institute) has been used successfully for the environmental tests of a majority of korean space programs, such as KOMPSAT, Koreasat KITSAT, STSAT and KSR program since 1996. To meet the recent needs of large size test facility available for the vibrational tests of the huge launch vehicles and tole-communication satellites which will be developed in the near future, KARI undertook to construct the large size multi-electromagnetic shaking system with 3 $\times$ 3m head expander system. The new system will consist of three electromagnetic shakers which has 160 kN thrust force individually, and be able te sustain up to 8 tons test load and 300 kNm overturing moment. And to avoid the tremendous cost and effort to furnish the seismic block with large size and weight, it will adopt a Lin-E-Air type configuration with which the seismic block is less severe than a Solid-Truninon type. In addition, to fulfill the strong requirement of high overturning moment the additional guidance system including a central bearing system on a central support and several pad bearings around the head expander body is now considered. This paper describes the configuration and the design parameters of the multi-shaking system which is under development by KARI's engineers.

  • PDF

Behavior of Geosynthetic Reinforced Modular Block Walls with Settlement of Foundation (기초지반의 침하가 계단식 보강토 옹벽의 거동에 미치는 영향)

  • Yoo, Chung-Sik;Jung, Hye-Young;Song, Ah-Ran
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.13-21
    • /
    • 2005
  • This paper presents the results of an investigation on the effects of settlement of foundation on the behavior of geosynthetic-reinforced modular block walls in a tiered arrangement using the finite-element method of numerical analysis. A parametric study was performed by varing the foundation condition and offset distance between the tiers and reinforcement length of the lower and upper tier using varified finite-element model. The finite-element analysis provided relevant information on the mechanical behavior of the wall and interaction mechanism between the upper and lowers that was otherwise difficult to obtain from the limit-equilibrium analysis based current design approaches. Practical implications of the findings obtained from this study to current design approaches are discussed in great detail.

  • PDF

A study on lubrication characteristics between piston ring and cylinder bore of bent-axis type piston pump for vehicle (차량용 사축식 피스톤 펌프의 피스톤 링과 실린더 보어간의 윤활특성에 관한 연구)

  • Jung, Jae-Youn;Cho, Ihn-Sung;Song, Kyu-Keun;Baek, Il-Hyun;Oh, Seok-Hyung;Jung, Seok-Hoon;Jeong, Yong-Wook
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.201-206
    • /
    • 2007
  • The bent-axis type piston pump which is driven by the piston rod works on the way that the piston rod drives the cylinder block, so the taper angle of the piston rod and the swivel angle between the cylinder block and the shaft are very important design factors. If the above factors cannot satisfy the conditions of optimum design, the friction loss between the cylinder bore and the piston increases, and the pump can even fail to work under conditions of severe friction and wear. Since the piston reciprocates in the cylinder bore with high velocity, and at the same time it rotates on its own axis and revolves on the center of the cylinder block, the decrease of the volume efficiency generated on account of the leakage between the cylinder bore and the piston. Therefore, to prevent this case, the piston ring is designed at the end of the piston, and the friction characteristics between the piston ring and the cylinder bore are in need of research due to its great influence on the performance of piston pump. Thus, in this paper, the elastic hydraulic oil's lubrication analyses of the film thickness, the pressure distribution, and the friction force, and so on, have been performed, and the lubrication characteristics between the piston ring and the cylinder bore are explored by the results of the numerical analysis, and it is contributed to realize the higher efficiency and the more advanced performance of the bent-axis type piston pump.