• Title/Summary/Keyword: block based extraction

Search Result 132, Processing Time 0.032 seconds

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

Tamper Detection of Digital Images using Hash Functions (해쉬 함수를 이용한 디지털 영상의 위변조 검출)

  • Woo, Chan-Il;Lee, Seung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4516-4521
    • /
    • 2014
  • Digital watermarking for digital image authentication and integrity schemes are based on fragile watermarking and can detect any modifications in a watermark embedded image by comparing the embedded watermark with the regenerated watermark. Therefore, the digital watermark for image authentication and integrity should be erased easily when the image is changed by digital image processing, such as scaling or filtering etc. This paper proposes an effective tamper detection scheme for digital images. In the proposed scheme, the original image was divided into many non-overlapping $2{\times}2$ blocks. The digital watermark was divided into two LSB of each block and the image distortion was imperceptible to the human eye. The watermark extraction process can be used to determine if the watermarked image has been tampered. The experimental results successfully revealed the effectiveness of the proposed scheme.

Digital Surveillance System with fast Detection of Moving Object (움직이는 물체의 고속 검출이 가능한 디지털 감시 시스템)

  • 김선우;최연성;박한엽
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.405-417
    • /
    • 2001
  • In this paper, since we currently using surveillance system of analog type bring about waste of resource and efficiency deterioration problems, we describe new solution that design and implementation to the digital surveillance system of new type applying compression techniques and encoding techniques of image data using MPEG-2 international standard. Also, we proposed fast motion estimation algorithm requires much less than the convectional digital surveillance camera system. In this paper a fast motion estimation algorithm is proposed the MPEG-2 video encoding. This algorithm is based on a hybrid use of the block matching technique and gradient technique. Also, we describe a method of moving object extraction directly using MPEG-2 video data. Since proposed method is very simple and requires much less computational power than the conventional object detection methods. In this paper we don't use specific H/W and this system is possible only software encoding, decoding and transmission real-time for image data.

  • PDF

A Noisy-Robust Approach for Facial Expression Recognition

  • Tong, Ying;Shen, Yuehong;Gao, Bin;Sun, Fenggang;Chen, Rui;Xu, Yefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2124-2148
    • /
    • 2017
  • Accurate facial expression recognition (FER) requires reliable signal filtering and the effective feature extraction. Considering these requirements, this paper presents a novel approach for FER which is robust to noise. The main contributions of this work are: First, to preserve texture details in facial expression images and remove image noise, we improved the anisotropic diffusion filter by adjusting the diffusion coefficient according to two factors, namely, the gray value difference between the object and the background and the gradient magnitude of object. The improved filter can effectively distinguish facial muscle deformation and facial noise in face images. Second, to further improve robustness, we propose a new feature descriptor based on a combination of the Histogram of Oriented Gradients with the Canny operator (Canny-HOG) which can represent the precise deformation of eyes, eyebrows and lips for FER. Third, Canny-HOG's block and cell sizes are adjusted to reduce feature dimensionality and make the classifier less prone to overfitting. Our method was tested on images from the JAFFE and CK databases. Experimental results in L-O-Sam-O and L-O-Sub-O modes demonstrated the effectiveness of the proposed method. Meanwhile, the recognition rate of this method is not significantly affected in the presence of Gaussian noise and salt-and-pepper noise conditions.

Walking assistance system using texture for visually impaired person (질감 특징을 이용한 시각장애인용 보행유도 시스템)

  • Weon, Sun-Hee;Choi, Hyun-Gil;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we propose an region segmentation and texture based feature extraction method which split the pavement and roadway from the camera which equipped to the visually impaired person during a walk. We perform the hough transformation method for detect the boundary between pavement and roadway, and devide the segmented region into 3-level according to perspective. Next step, split into pavement and roadway according to the extracted texture feature of segmented regions. Our walking assistance system use rotation-invariant LBP and GLCM texture features for compare the characteristic of pavement block with various pattern and uniformity roadway. Our proposed method show that can segment two regions with illumination invariant in day and night image, and split there regions rotation and occlution invariant in complexed outdoor image.

An Camera Information Detection Method for Dynamic Scene (Dynamic scene에 대한 카메라 정보 추출 기법)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.275-280
    • /
    • 2013
  • In this paper, a new stereo object extraction algorithm using a block-based MSE (mean square error) algorithm and the configuration parameters of a stereo camera is proposed. That is, by applying the SSD algorithm between the initial reference image and the next stereo input image, location coordinates of a target object in the right and left images are acquired and then with these values, the pan/tilt system is controlled. And using the moving angle of this pan/tilt system and the configulation parameters of the stereo camera system, the mask window size of a target object is adaptively determined. The newly segmented target image is used as a reference image in the next stage and it is automatically updated in the course of target tracking basing on the same procedure. Meanwhile, a target object is under tracking through continuously controlling the convergence and FOV by using the sequentiall extracted location coordinates of a moving target.

Extraction of Object 3-Dimension Position Coordinates using CCD-Camera (CCD-Camera를 이용한 목적대상의 3차원 위치좌표 추출)

  • Kim, Moo-Hyun;Lee, Ji-Hyun;Kim, Young-Hee;Park, Mu-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.245-249
    • /
    • 2010
  • In the stereo vision system, information about an object could be gained by searching through images. Edges which are based on the information about an object are used to find the position of the object and send a message of its position coordinate to a unmanned crain. This thesis proposes an algorithm to find the center point of the object's surface which is connected to the unmanned crain's arm, and to recognize the shape of the object by using two CCD cameras. At first, getting information about the edges, and distinguishing each edge's characteristics depend on user's option, and then find the location information by a set of positions that are proposed. This thesis is expected to be devoted to the development of an automation system of unmanned moving equipment.

  • PDF

A Blocking Algorithm of a Target Object with Exposed Privacy Information (개인 정보가 노출된 목표 객체의 블로킹 알고리즘)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.43-49
    • /
    • 2019
  • The wired and wireless Internet is a useful window to easily acquire various types of media data. On the other hand, the public can easily get the media data including the object to which the personal information is exposed, which is a social problem. In this paper, we propose a method to robustly detect a target object that has exposed personal information using a learning algorithm and effectively block the detected target object area. In the proposed method, only the target object containing the personal information is detected using a neural network-based learning algorithm. Then, a grid-like mosaic is created and overlapped on the target object area detected in the previous step, thereby effectively blocking the object area containing the personal information. Experimental results show that the proposed algorithm robustly detects the object area in which personal information is exposed and effectively blocks the detected area through mosaic processing. The object blocking method presented in this paper is expected to be useful in many applications related to computer vision.

Cyber Threat Intelligence Traffic Through Black Widow Optimisation by Applying RNN-BiLSTM Recognition Model

  • Kanti Singh Sangher;Archana Singh;Hari Mohan Pandey
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.99-109
    • /
    • 2023
  • The darknet is frequently referred to as the hub of illicit online activity. In order to keep track of real-time applications and activities taking place on Darknet, traffic on that network must be analysed. It is without a doubt important to recognise network traffic tied to an unused Internet address in order to spot and investigate malicious online activity. Any observed network traffic is the result of mis-configuration from faked source addresses and another methods that monitor the unused space address because there are no genuine devices or hosts in an unused address block. Digital systems can now detect and identify darknet activity on their own thanks to recent advances in artificial intelligence. In this paper, offer a generalised method for deep learning-based detection and classification of darknet traffic. Furthermore, analyse a cutting-edge complicated dataset that contains a lot of information about darknet traffic. Next, examine various feature selection strategies to choose a best attribute for detecting and classifying darknet traffic. For the purpose of identifying threats using network properties acquired from darknet traffic, devised a hybrid deep learning (DL) approach that combines Recurrent Neural Network (RNN) and Bidirectional LSTM (BiLSTM). This probing technique can tell malicious traffic from legitimate traffic. The results show that the suggested strategy works better than the existing ways by producing the highest level of accuracy for categorising darknet traffic using the Black widow optimization algorithm as a feature selection approach and RNN-BiLSTM as a recognition model.

Method of Biological Information Analysis Based-on Object Contextual (대상객체 맥락 기반 생체정보 분석방법)

  • Kim, Kyung-jun;Kim, Ju-yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.41-43
    • /
    • 2022
  • In order to prevent and block infectious diseases caused by the recent COVID-19 pandemic, non-contact biometric information acquisition and analysis technology is attracting attention. The invasive and attached biometric information acquisition method accurately has the advantage of measuring biometric information, but has a risk of increasing contagious diseases due to the close contact. To solve these problems, the non-contact method of extracting biometric information such as human fingerprints, faces, iris, veins, voice, and signatures with automated devices is increasing in various industries as data processing speed increases and recognition accuracy increases. However, although the accuracy of the non-contact biometric data acquisition technology is improved, the non-contact method is greatly influenced by the surrounding environment of the object to be measured, which is resulting in distortion of measurement information and poor accuracy. In this paper, we propose a context-based bio-signal modeling technique for the interpretation of personalized information (image, signal, etc.) for bio-information analysis. Context-based biometric information modeling techniques present a model that considers contextual and user information in biometric information measurement in order to improve performance. The proposed model analyzes signal information based on the feature probability distribution through context-based signal analysis that can maximize the predicted value probability.

  • PDF