• Title/Summary/Keyword: block based coding

Search Result 477, Processing Time 0.028 seconds

Block-Centered Symmetric Motion Estimation for Side Information Generation in Distributed Video Coding (분산 비디오 부호화에서 보조정보 생성을 위한 블록중심 대칭형의 움직임 탐색 기법)

  • Lee, Chan-Hee;Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • Side information generation techniques play a great role in determining the overall performance of the DVC (Distributed Video Coding) coding system. Most conventional techniques for side information generation are mainly based on the block matching algorithm with symmetric motion estimation between the previously reconstructed key frames. But, these techniques tend to show mismatches between the motion vectors and the real placements of moving objects. So these techniques need to be modified so as to search well the real placements of moving objects. To overcome this problem, this paper proposes a block-centered symmetric motion estimation technique which uses the same coordinates with the given block. Through computer simulations, it is shown that the proposed algorithm outperforms the conventional schemes in the objective quality.

Automatic Variable Block Truncation Coding Technique (자동 가변 블록절단 부호화 기법)

  • 김태균;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.73-86
    • /
    • 1993
  • This paper proposes an automatic variable block truncation coding (BTC) method. It selects the block size automatically based on the mode of the discontinutiy measure of blocks. The combination of an automatic block-size determination scheme and the conventional BTC results in the proposed automatic variable BTC techniques. For color images, subsampling in I and Q chrominance components is adopted along with the variable BTC. To show the effectiveness of the proposed algorithm, its simulation results are compared to those of the several conventional BTC algorithms for monochrome and color test images. Computer simulation shows that the proposed algorithm gives better performance than the conventional ones based on the subjective and objective performance evaluation.

  • PDF

Quantitative Image Qualify Assessment for Block-based DCT Image Coder using Human Visual Characteristics (인간시각특성을 이용한 블록기반 DCT 영상 부호화기의 정량적 화질 평가)

  • Chung, Tae-Yun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.424-431
    • /
    • 2002
  • This paper proposes a new quantitative image assessment model which is essential to verify the performance of block-based DCT coding. The proposed model considers not only global distortions such as frequency sensitivity and channel masking using HVS based visual model, but also distortions including several local distortions caused by block-based coding.

An Efficient VLC Table Prediction Scheme for H.264 Using Weighting Multiple Reference Blocks (H.264 표준에서 가중된 다중 참조 블록을 이용한 효율적인 VLC 표 예측 방법)

  • Heo, Jin;Oh, Kwan-Jung;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.39-42
    • /
    • 2005
  • H.264, a recently proposed international video coding standard, has adopted context-based adaptive variable length coding (CAVLC) as the entropy coding tool in the baseline profile. By combining an adaptive variable length coding technique with context modeling, we can achieve a high degree of redundancy reduction. However, CAVLC in H.264 has weakness that the correct prediction rate of the variable length coding (VLC) table is low in a complex area, such as the boundary of an object. In this paper, we propose a VLC table prediction scheme considering multiple reference blocks; the same position block of the previous frame and the neighboring blocks of the current frame. The proposed algorithm obtains the new weighting values considering correctness of the VLC table for each reference block. Using this method, we can enhance the prediction rate of the VLC table and reduce the bit-rate.

  • PDF

Depth-of-interest-based Bypass Coding-unit Algorithm for Inter-prediction in High-efficiency Video Coding

  • Rhee, Chae Eun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.231-234
    • /
    • 2016
  • The next-generation video coding standard known as High-Efficiency Video Coding (HEVC) was developed with the aim of doubling the bitrate reduction offered by H.264/Advanced Video Coding (AVC) at the expense of an increase in computational complexity. Mode decision with motion estimation is still one of the most time-consuming computations in HEVC, as it is with H.264/AVC. Several schemes for a fast mode decision have been presented in reference software and in other studies. However, a possible speed-up in conventional schemes is sometimes insignificant for videos that have inhomogeneous spatial and temporal characteristics. This paper proposes a bypass algorithm to skip large-block-size predictions for videos where small block sizes are preferred over large ones. The proposed algorithm does not overlap with those in previous works, and thus, is easily used with other fast algorithms. Consequently, an independent speed-up is possible.

A Family of Concatenated Network Codes for Improved Performance With Generations

  • Thibault, Jean-Pierre;Chan, Wai-Yip;Yousefi, Shahram
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.384-395
    • /
    • 2008
  • Random network coding can be viewed as a single block code applied to all source packets. To manage the concomitant high coding complexity, source packets can be partitioned into generations; block coding is then performed on each set. To reach a better performance-complexity tradeoff, we propose a novel concatenated network code which mixes generations while retaining the desirable properties of generation-based coding. Focusing on the code's erasure performance, we show that the probability of successfully decoding a generation on erasure channels can increase substantially for any erasure rate. Using both analysis (for small networks) and simulations (for larger networks), we show how the code's parameters can be tuned to extract best performance. As a result, the probability of failing to decode a generation is reduced by nearly one order of magnitude.

Block-Ordered Layered Detector for MIMO-STBC Using Joint Eigen-Beamformers and Ad-Hoc Power Discrimination Scheme

  • Lee Won-Cheol
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2006
  • Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.

Progressive Image Transmission using LOT/CVQ with HVS Weighting (HVS가중치를 갖는 LOT/CVQ를 이용한 점진적 영상 전송)

  • 황찬식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.685-694
    • /
    • 1993
  • A progressive image transmission (PIT) scheme based on the classified transform vector quantization (CVQ) technique using the lapped orthogonal transform (LOT) and human visual system (HVS) weighting is proposed in this paper. Conventional block transform coding of images using DCT produces in general undesirable block-artifacts at low bit rates. In this paper, image blocks are transformed using the LOT and classified into four classes based on their structural properties and further divided adaptively into subvectors depending on the LOT coefficient statistics with HVS weighting to improve the reconstructed image quality by adaptive bit allocation. The subvectors are vector quantized and transmitted progressively. Coding tests using computer simulations show that the LOT/CVQ based PIT of images is a effective coding scheme. The results are also compared with those obtained using PIT/DCTVQ. The LOT/CVQ based PIT reduces the block-artifacts significantly.

  • PDF

Enhanced Inter Mode Decision Based on Contextual Prediction for P-Slices in H.264/AVC Video Coding

  • Kim, Byung-Gyu;Song, Suk-Kyu
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.425-434
    • /
    • 2006
  • We propose a fast macroblock mode prediction and decision algorithm based on contextual information for Pslices in the H.264/AVC video standard, in which the mode prediction part is composed of intra and inter modes. There are nine $4{\times}4$ and four $16{\times}16$ modes in the intra mode prediction, and seven block types exist for the best coding gain based on rate-distortion optimization. This scheme gives rise to exhaustive computations (search) in the coding procedure. To overcome this problem, a fast inter mode prediction scheme is applied that uses contextual mode information for P-slices. We verify the performance of the proposed scheme through a comparative analysis of experimental results. The suggested mode search procedure increased more than 57% in speed compared to a full mode search and more than 20% compared to the other methods.

  • PDF

A Depth-map Coding Method using the Adaptive XOR Operation (적응적 배타적 논리합을 이용한 깊이정보 맵 코딩 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.274-292
    • /
    • 2011
  • This paper proposes an efficient coding method of the depth-map which is different from the natural images. The depth-map are so smooth in both inner parts of the objects and background, but it has sharp edges on the object-boundaries like a cliff. In addition, when a depth-map block is decomposed into bit planes, the characteristic of perfect matching or inverted matching between bit planes often occurs on the object-boundaries. Therefore, the proposed depth-map coding scheme is designed to have the bit-plane unit coding method using the adaptive XOR method for efficiently coding the depth-map images on the object-boundary areas, as well as the conventional DCT-based coding scheme (for example, H.264/AVC) for efficiently coding the inside area images of the objects or the background depth-map images. The experimental results show that the proposed algorithm improves the average bit-rate savings as 11.8 % ~ 20.8% and the average PSNR (Peak Signal-to-Noise Ratio) gains as 0.9 dB ~ 1.5 dB in comparison with the H.264/AVC coding scheme. And the proposed algorithm improves the average bit-rate savings as 7.7 % ~ 12.2 % and the average PSNR gains as 0.5 dB ~ 0.8 dB in comparison with the adaptive block-based depth-map coding scheme. It can be confirmed that the proposed method improves the subjective quality of synthesized image using the decoded depth-map in comparison with the H.264/AVC coding scheme. And the subjective quality of the proposed method was similar to the subjective quality of the adaptive block-based depth-map coding scheme.