• 제목/요약/키워드: blended fuels

검색결과 108건 처리시간 0.023초

Combustion and Emission Characteristics of Diesel Engine by Mixing DME and Bunker Oil

  • Ryu, Younghyun;Dan, Tomohisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.885-893
    • /
    • 2012
  • DME (Dimethyl ether) is regarded as one of the candidates of alternative fuels for diesel engine, because of its higher cetane number suitable for a compression ignition engine. Also, DME is a simple chemical structure, colorless gas that is easily liquefied and transported. On the other hand, Bunker oil (JIS C heavy oil) has long been used as a basic fuel in marine diesel engines and is the lowest grade fuel oil. In this study, the combustion and emission characteristics were measured experimentally in the direct injection type diesel engine operated with DME and Bunker oil mixed fuel. From our experimental results, it is induced that DME and Bunker oil blended fuel would be an effective fuel which can reduces the concentration of harmful matter in exhaust gases.

디젤기관의 대체연료로서 DEE의 연소 특성에 관한 연구 (A Study on the Combustion Characteristics of DEE as an Alternative Fuel in Diesel Engine)

  • 유경현;최준혁;오영택
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.47-56
    • /
    • 2001
  • Nitrogen oxides(NOx) and smoke emissions of diesel engine are regarded as a source of air pollution, and there is a global trend to enforce more stringent regulations on these exhaust gas emissions. However, the trade-off relation of NOx and smoke is a main obstacle to reduce both of them simultaneously. In this paper, experiments were conducted with an oxygenated fuel(diethyl ether) as an effective way to improve the trade-off relation of NOx and smoke. Exhaust emissions of diesel fuels with DEE were influenced by the additive content of DEE and the injection timing. Especially, DEE effected more at the high engine speed and load than at the low engine speed and load. Diesel fuel blended with DEE 10% was a desirable blend for the simultaneous reduction of NOx and smoke.

  • PDF

첨가제 혼합에 따른 GTL연료의 윤활성 (The Lubricity of GTL Fuel by Additives)

  • 임영관;정충섭;김종렬;임의순
    • Tribology and Lubricants
    • /
    • 제26권3호
    • /
    • pp.190-198
    • /
    • 2010
  • GTL(gas-to-liquid) fuel produced by the Fischer-Tropsch process using carbon monoxide(CO) and hydrogen(H2) is expected to be one of the environmental friendly fuel for alternative and blended to petrodiesel. But GTL have poor lubricity due to paraffin as main component of GTL which is not involve polar materials. In this paper, we had investigated the lubricity improvement of GTL fuels with various lubricants using HFRR(high frequency reciprocating rig).

요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선 (Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME)

  • 이영화;김광수;장영석;신정아;이기택;최인후
    • 한국응용과학기술학회지
    • /
    • 제31권1호
    • /
    • pp.113-119
    • /
    • 2014
  • 바이오디젤의 저온유동성과 산화안정성은 주로 녹는점이 높은 포화 및 불포화 지방산 메틸에스테르의 함량에 의해 좌우된다. 본 연구는 동물성 유지인 우지 유래 바이오디젤에 요소를 첨가하여 포화지방산 메틸에스테르 함량을 저감시켜 동물성 바이오디젤의 저온유동성 개선과 포화지방산 메틸에스테르 함량이 저감된 동물성 바이오디젤을 식물성 바이오디젤에 혼합함으로써 식물성 바이오디젤(유채유, 폐식용유, 대두유 및 동백유)의 저온유동성을 개선하기 위해 수행 되었다. 연구결과, 동물성 바이오디젤의 포화도 저감을 통해 저온필터막힘점을 최대 $-15^{\circ}C$까지 낮추었고, 포화도가 저감된 동물성 바이오디젤을 식물성 바이오디젤과 혼합함으로서 식물성 바이오디젤의 저온필터막힘점을 $-10{\sim}-18^{\circ}C$까지 낮출 수 있었다. 본 연구를 통해 동 식물성 유지 유래 바이오디젤의 저온특성을 개선함으로써 국내 겨울철 환경조건에서 연료유로 적용 가능성을 증대할 것으로 기대한다.

바이오디젤이 혼합된 디젤 연료의 분무 및 연소 특성에 관한 연구 (A Study on Spray and Combustion Characteristics of Biodiesel Blended Diesel Fuel in a Constant Volume Combustion Chamber)

  • 서현욱;전충환
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.132-136
    • /
    • 2015
  • 바이오디젤은 재생가능한 친환경적인 연료로서 화석연료의 대체에너지로 수송분야에서 각광받고 있다. 따라서 바이오디젤의 사용량은 향후 꾸준히 증가할 것으로 보이며, 이에 대한 연구가 필요하다. 따라서 본 연구에서는 순수 디젤 대비 바이오디젤이 질량기준으로 0%, 5%, 20%, 50%, 100% 혼합된 연료를 사용하여 분무 및 연소실험을 진행하고, 분무각, 평균 입경, 열발생율 등의 특성을 도출하였다. 실험 결과, 바이오디젤의 혼합률이 증가할수록 연료의 점도 및 밀도가 증가하여 분무각과 특정 위치에서의 평균 입경이 작아지는 것을 확인할 수 있었으며, 바이오디젤의 함산소 특성으로 인해 초기 연소가 촉진되며, 이로 인해 연소 종료 시점이 앞당겨 지는 것을 볼 수 있었다.

연료 혼합비율 및 산소농도가 노말데케인/에탄올 혼합연료의 점화특성에 미치는 영향 (Effects of Fuel Blending Ratio and Oxygen Concentration on Auto-ignition Characteristics of n-Decane/Ethanol Blended Fuels)

  • 오채호;강기중;최경민
    • 대한기계학회논문집B
    • /
    • 제41권11호
    • /
    • pp.749-757
    • /
    • 2017
  • 본 연구는 대체연료 개발 및 국제환경규제에 대응하기 위하여, 노말데케인과 에탄올 혼합연료의 조성 및 온도 변화가 자착화 특성에 미치는 영향을 수치적으로 해석하였다. 해석용 프로그램으로는 CHEMKIN-PRO를 사용하였고, 반응모델은 LLNL모델을 이용하였다. 수치해석 결과를 통해 저온 연소 반응이 일어나는 1000K 이하에서는 에탄올의 몰 비율이 증가함에 따라 점화지연 시간이 증가하는 현상을 확인하였다. 에탄올의 높은 옥탄가로 인해 에탄올의 높은 비율은 점화를 일으키는 OH라디칼의 농도 증가를 지연시키기 때문이다. 배기가스 재순환을 적용하기 위해 혼합연료에 산소농도를 변화하여 수치해석을 하였다. 산소농도가 감소함에 따라 전체 점화지연시간은 증가하게 되고, 이는 질소가스가 연소실 내에 열부하로 작용하기 때문이다.

디젤유/바이오디젤유-열분해유-부탄올 혼합유의 디젤 엔진 적용 가능성에 관한 연구 (A Feasibility Study of Using Diesel/Biodiesel-Pyrolysis Oil-Butanol Blends in a Diesel Engine)

  • 김호승;장영운;이석환;김태영;강건용;윤준규
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.116-125
    • /
    • 2014
  • Pyrolysis oil (PO), derived from biomass through fast pyrolysis process have the potential to displace significant amounts of petroleum fuels. The PO derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine is very limited due to its poor properties like low energy density, low cetane number, high acidity and high viscosity of PO. Therefore, one of the easiest way to adopt PO to diesel engine without modifications is blended with other fuels that have high centane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel or biodiesel. Thus, to stabilize a homogeneous phase of diesel/biodiesel-PO blends, a proper surfactant should be used. Nevertheless, PO which was produced from different biomass type have varied characteristics and this complicates the selection of a suitable additive for a specific PO-diesel emulsion. In this regard, a more simple approach such as the use of a co-solvent like ethanol or butanol to induce a more stable phase of the PO-diesel mixture could be a promising alternative. In this study, a diesel engine operated with diesel/biodiesel-PO-butanol blends was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine were examined under the engine loads of IMEP 0.2 ~ 0.8MPa.

디젤엔진 성능에 미치는 바이오디젤 연료에 관한 연구 (A Study on Biodiesel Fuel of Engine Performance and Emission Characteristics in Diesel Engine)

  • 진뢰;성욱곤;김재덕;송규근
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.59-65
    • /
    • 2014
  • Diesel engines have the superior combustion efficiency and fuel economy that they are widely used for industry, heavyduty vehicles, etc. However, its exhaust emissions have become the major concerns due to their environmental impacts. Moreover, the depletion of fossil fuels is the main issue. Therefore, it is important to look for alternative sources of energy. Bio-diesel is one of the ideal energy which has proved to be ecofriendly for more than fossil fuels. The experimental tests analysed the engine performance and emission characteristics of a diesel engine using diesel and biodiesel blended of BD25, BD45 and BD65, in order to study the use of clean fuel to meet the increasingly stringent emission regulations. The engine performance was examined by using engine dynamometer while an exhaust gas analyzer was used to examine the emission characteristics. The effect of biodiesel on engine performance were lower to diesel through comparing their HP and torque but fuel consumption was slightly increased because of biodiesel has lower heating value and higher density than diesel. However, due to the better lubricity, the brake thermal efficiency of biodiesel was higher than diesel. The emission characteristics were strongly affected by the blending ratio of diesel and biodiesel. The results showed that the smoke opacity, hydrocarbons (HC) and carbon monoxide (CO) emissions decreased while the nitrogen oxides (NOX) slightly increased.

디젤엔진에서 디젤, GTL, 바이오디젤의 혼합유의 배기배출물 특성에 관한 실험적 연구 (Experimental Study on the Emission Characteristics of Diesel, GTL, and their Blends with Biodiesel in a Diesel Engine)

  • 이용규;문건필;정동수
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.140-146
    • /
    • 2010
  • An experimental study was carried out to investigate the emission characteristics for various alternative fuels in a 2.0 liter 4-cylinder turbo-charged diesel engine. The conventional diesel fuel, neat GTL (Gas to Liquid), blends of diesel and biodiesel(BD20), and blends of GTL and biodiesel(G+BD20 and G+BD40) were applied, and their emission characteristics were compared at various steady-state engine operating conditions. A noticeable reduction of exhaust emissions compared to conventional diesel fuel, except for NOx emission, was observed for G+BD40, where there is a maximum 30% averaged reduction for gaseous emissions (THC and CO) and 70% for PM mass concentrations. When comparing PM size distributions for biodiesel blended fuels, the PM number concentration in accumulation mode, where the diameter of PM is greater than 50 nm, decreased due to additional oxygen content in the biodiesel fuel; in nucleation mode, where the diameter of PM is less than 50nm, there was a slight increase or decrease in the PM number concentration depending on the amount of oxygen available in the combustion chamber.

RCCI/SCCI 조건하에서 희박 PRF/공기 혼합물의 점화에 관한 직접수치모사를 이용한 비교 연구 (DNSs of the Ignition of a Lean PRF/Air Mixture under RCCI/SCCI Conditions: A Comparative Study)

  • ;유광현;유춘상
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.179-182
    • /
    • 2014
  • A comparative DNS study of the ignition characteristics of dual-fueled reactivity controlled compression ignition (RCCI) and stratification charge compression ignition (SCCI) is investigated using a 116-species reduced primary reference fuel (PRF) mechanism. In the RCCI combustion, two PRF fuels (n-heptane and iso-octane) with opposite autoignition characteristics are separatedly supplied and in-cylinder blended such that spatial variations in fuel reactivity, fuel concentration and temperature are achieved. In the SCCI combustion, however, just a single fuel (PRF50) is used such that only fuel concentration and temperature inhomoginieties are obtained. Because three factors, rather than only two as in SCCI combustion, govern the overall RCCI combustion, combustion timing and combustion duration or heat release rate of RCCI combustion are flexibly and effectively controlled. It is found that the overall RCCI combustion occurs much earlier and its combustion duration is longer compared to SCC combustionI. Moreover, the negative temperature coefficient (NTC) has a positive effect on enhancing RCCI combustion by inducing a shorter combustion timing and a longer combustion duration as a result of the occurrence of a predominant low-speed deflagration-combustion mode.

  • PDF