• Title/Summary/Keyword: blast-induced ground vibrations

Search Result 8, Processing Time 0.018 seconds

New methodology to prevent blasting damages for shallow tunnel

  • Ozacar, Vehbi
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1227-1236
    • /
    • 2018
  • From all of the environmental problems, blast-induced vibrations often cause concern to surrounding residents. It is often claimed that damage to building superstructures is due to blasting, and sometimes the building owner files a lawsuit against the company that perform blasting operations. The blast-vibration problem has been thoroughly investigated in the past and continues to be the subject of ongoing research. In this study, a tunnel construction has been performed by a construction company, according to their contract they must have used drilling & blasting method for excavation in tunnel inlet and outlet portal. The population is very condensed with almost tunnel below in the vicinity houses of one or two floors, typically built with stone masonry and concrete. This situation forces the company to take extreme precautions when they are designing blasts so that the blast effects, which are mainly vibration and aerial waves, do not disturb their surrounding neighbors. For this purpose, the vibration measurement and analysis have been carried out and a new methodology in minimizing the blast induced ground vibrations at the target location, was also applied. Peak particle velocity and dominant frequencies were taken into consideration in analyzing the blast-induced ground vibration. The methodology aims to employ the most suitable time delays among blast-hole groupings to render destructive interference of surface waves at the target location.

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF

Comparative review and interpretation of the conventional and new methods in blast vibration analyses

  • Uyar, G. Gulsev;Aksoy, C.O.
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The customary approach used in the blast vibration analysis is to derive empirical relations between the peak particle velocities of blast-induced waves and the scaled distance, and to develop patterns limiting the amounts of explosives. During the periods when excavations involving blasting were performed at sites far from residential areas and infrastructure works, this method based on empirical correlations could be effective in reducing vibrations. However, blasting procedures applied by the fast-moving mining and construction industries today can be very close to, in particular cities, residential areas, pipelines, geothermal sites, etc., and this reveals the need to minimize blast vibrations not only by limiting the use of explosives, but also employing new scientific and technological methods. The conventional methodology in minimizing blast vibrations involves the steps of i) measuring by seismograph peak particle velocity induced by blasting, ii) defining ground transmission constants between the blasting area and the target station, iii) finding out the empirical relation involving the propagation of seismic waves, and iv) employing this relation to identify highest amount of explosive that may safely be fired at a time for blasting. This paper addresses practical difficulties during the implementation of this conventional method, particularly the defects and errors in data evaluation and analysis; illustrates the disadvantages of the method; emphasizes essential considerations in case the method is implemented; and finally discusses methods that would fit better to the conditions and demands of the present time compared to the conventional method that intrinsically hosts the abovementioned disadvantages.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

A study on Measurement of Blast-Induced Ground Vibrations in Urban Areas (도심지(都心地) 발파(發破)에서의 지반진동(地盤振動) 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Woong-Soo;Lee, Kyoung-Woon;Lim, Han-Uk;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.17-26
    • /
    • 1983
  • The blast vibrations were measured from 10 places through Seoul subway area to study their effects on the structures and to establish the safe blasting limits. For purpose of the present study, particle velocity only was recorded and analyzed, because it correlated most directly with damage. The results are as follows: (1) The proagation equation, $V=K(D/W^{1/3})^{-n}$ was obtained. Typical values could be found for n range from 1.7 to 1.5 and for k range from 48 to 138. (2) From the relationship between schmidt hammer rebound hardness and uniaxial compressive strength, $Sc=0.514{\times}(S.H)^{0.23}$, the compressive strength at any area can be assumed. (3) The use of AN-FO and other explosives with low detonation pressure may reduce vibration levels generated.

  • PDF

A Comparison of Blasting Vibration Level due to the Kind of Explosives Produced in Korea (국산(國産) 화약류(火藥類)의 종류(種類)에 따른 발파(發破) 진동치(振動値)의 비교(比較))

  • Lim, Han-Uk;Kim, Woong-Soo;Lee, Kyoung-Woon
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.9-14
    • /
    • 1985
  • The blast-induced ground vibrations is one of the most important factors which is considered to design blasting patterns in urban excavation. To compare with vibration level of different explosives, peak particle velocity of each explosive was measured. The results are summerized as follows. 1. Among the three kinds of explosives, the largest vibration was obtained from the gelatine dynamite, while the smallest was blasting of ammonium nitrate. 2. The vibration levels of ammonium nitrate and slurry explosive were smaller about 35%, 20% respectively than that of gelatine dynamite.

  • PDF

Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

  • Haghnejad, Ali;Ahangari, Kaveh;Moarefvand, Parviz;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.

The Role of PPV and PVS in Controlled Blasting (제어발파의 설계 및 관리 과정에서의 PPV와 PVS의 역할)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Hwang, Hyun-Joo;Choi, Yong-Kun;Ahn, Myung-Seog
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The safe level for residential structures has usually been prescribed as just 'particle velocity' in various specifications in Korea. It implies that there is a possibility of interpreting the 'particle velocity' as the PPV (Peak Particle Velocity), PVS (Peak Vector Sum), or something else, depending on the interpreter. As a result, there have always been some difficulties in both designing a controlled blasting and controling the blast-induced ground vibrations. This paper is intended to show what the role of the safe level criteria such as PPV or PVS is, and also how we should use the concept of the scaled distance equation in a controlled blast design. The paper also emphasizes the importance of the allowable level for various residential structures and its uses in each stage of the controlled blast design.