• Title/Summary/Keyword: blast test

Search Result 720, Processing Time 0.03 seconds

Development of slag based Shirasu geopolymer

  • Katpady, Dhruva Narayana;Takewaka, Koji;Yamaguchi, Toshinobu
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Shirasu, a pyroclastic flow deposit, showed considerable performance as aluminosilicate source in geopolymer, based on past research. However, the polymerization reactivity was somewhat lower compared to the traditional fly ash based geopolymer even though the long-term strength was fairly good. The present study concentrates on the development of higher initial strength performance of Shirasu based geopolymer by utilizing ground granulated blast furnace slag as an admixture. Mortars with various mix proportions were adopted to study the effect of parametric changes on strength development along with the addition of slag in different percentages. A combination of sodium hydroxide and sodium silicate was used as alkaline activators considering parameters like molar ratios of alkali to geopolymer water and silica to alkali molar ratio. The mortars were cured at elevated temperatures under different curing conditions to analyze the effect on strength development. Compressive strength test, mercury intrusion porosimetry and X-ray powder diffraction were carried out to assess the strength performance and microstructure of slag-Shirasu based geopolymer. Based on the experimental study, it was observed that the initial and long-term strength development of Slag-Shirasu geopolymer were improved by the addition of slag.

Strength enhancement of concrete incorporating alccofine and SNF based admixture

  • Reddy, Panga Narasimha;Jindal, Bharat Bhushan;Kavyateja, Bode Venkata;Reddy, A. Narender
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • Cement is the most significant component in concrete. Large scale manufacturing of cement consumes more energy and release harmful products (Carbon dioxide) into the atmosphere that adversely affect the environment and depletes the natural resources. A lot of research is going on in globally concentrating on the recycling and reuse of waste materials from many industries. A major share of research is focused on finding cementitious materials alternatives to ordinary Portland cement. Many industrial waste by-products such as quartz powder, metakaolin, ground granulated blast furnace slag, silica fume, and fly ash etc. are under investigations for replacement of cement in concrete to minimize greenhouse gases and improve the sustainable construction. In current research, the effects of a new generation, ultra-fine material i.e., alccofine which is obtained from ground granulated blast furnace slag are studied as partial replacement by 25% and with varying amounts of sulfonated naphthalene formaldehyde (i.e., 0.3%, 0.35% and 0.40%) on mechanical, water absorption, thermal and microstructural properties of concrete. The results showed moderate improvement in all concrete properties. Addition of SNF with combination of alccofine showed a significant enhancement in fresh, hardened properties and water absorption test as well as thermal and microstructural properties of concrete.

Preparation and Characterization of the Mine Residue-based Geopolymeric Ceramics (광미를 이용한 지오폴리머 세라믹제조 및 물성)

  • Son, Se-Gu;Lee, Woo-Keun;Kim, Young-Do;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.502-508
    • /
    • 2011
  • The goal of the present work was to investigate the development of a geopolymeric ceramic material from a mixture of mine residue, coal fly ash, blast furnace slag, and alkali activator solution by the geopolymer technique. The results showed that the higher compressive strength of geopolymeric ceramic material increased with an increase in active filler (blast furnace slag + coal fly ash) contents and with a reduction of mine residue contents. The geopolymeric ceramic had very high early age strength. The compressive strength of the geopolymeric ceramic depended on the added active filler content. The maximum compressive strength of the geopolymeric ceramic containing 20 wt.% mine residue was 141.2 MPa. The compressive strength of geopolymeric ceramic manufactured by adding mine residue was higher than that of portland cement mortar, which is 60 MPa, when cured for 28 days. SEM observation showed the possibility of having amorphous aluminosilicate gel within geopolymeric ceramic. XRD patterns indicate that the geopolymeric ceramic was composed of amorphous aluminosilicate, calcite, quartz, and muscovite. The Korea Standard Leaching Test (KSLT) was used to determine the leaching potential of the geopolymeric ceramic. The amounts of heavy metals were noticeably reduced after the solidification of mine residue with active filler.

Behaviour of Classification and Dezincification of Blast Furnace Sludge in Hydrocyclone (습식 사이클론 내에서 고로슬러지의 분급 및 탈아연 거동)

  • 김태동;김성완
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.23-30
    • /
    • 1998
  • Aiming to rccycle the valuable mrnpunenl such as iron oxiiles and carbon from blast turnace sludge, [he physlco-chemical property and classification charactei~stics by hydrocyclone wcie invcstigxted. Carbon in sludge wils analysed to bo cxated mostly in coarse particles of sludge as a form of graphite whereas zinc lnortly in fine particles as zinc sulfides. On thc contrxy, iron oxides wne proved to be in the form of hematite, magnetile without any segregations according to particlc sizes of sludge. From the results of classiIication test using hydmcyclane of 75 mm dm, the recovcry and dczincificatian rate of low zinc sludge wcrc in the range of 67.9-73.6%, and 72.7-86 8%, respectively.

  • PDF

Study on the Dynamic Response Characteristics of Impact Force Sensors Based on the Strain Gage Measurement Principle (변형률 게이지 측정원리를 이용한 충격하중 측정 센서의 동적응답 특성에 관한 연구)

  • Ahn, Jung-Lyang;Kim, Seung-Kon;Sung, Nak-Hoon;Song, Young-Soo;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • In order to estimate blast damage zone and control rock fragmentation in blasting, it is important to obtain information regarding blast hole pressure. In this study, drop impact tests of acrylic, aluminium, steel sensors were performed to investigate the dynamic response characterizations of the sensors through the strain signals. As a result, the strain signals obtained from the steel sensors showed less sensitivity to impact force level and experienced small changes with various length of the sensors. The steel sensors were applied to measure the impact force of an electric detonator.

The Resistance of Penetrability and Diffusion of Chloride Ion in Blended Low Heat Type Cement Concrete (저발열형 시멘트 콘크리트의 염소이온 침투$\cdot$확산에 대한 저항성)

  • 문한영;신화철
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 1999
  • Blended Low Heat type cement is ground granulated blast furnace slag and fly ash mixed ternary with ordinary portland cement. From the viewpoint of X-ray patterns of domestic LHC, the main components of cement such as $C_2$S, $C_3$A, $C_3$S are considerably reduced. Therefore the heat evolution of LHC paste is 42cal/g lower than of OPC paste. At early age, the compressive strength development of LHC concrete is delayed, but the slump loss ratio of fresh concrete is reduced more than 20% with elapsed time. The penetrability of LHC is lower than that of OPC by 1/7.8 with the penetrability of chloride ion into the concrete until the age of 120 days. And the PD Index value of LHC is 0.44$\times$10-6 $\textrm{cm}^2$/s, which indicates only 39.3% of OPC. From the Mercury Intrusion Porosimetry test of cement past, we know that the pore size of LHC is more dense than that of OPC by production of C-S-H.

QSAR Studies on the Inhibitory Activity of New Methoxyacrylate Analogues against Magnaporthe grisea (Rice Blast Disease)

  • Song, Young-Seob;Sung, Nack-Do;Yu, Yong-Man;Kim, Bum-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1513-1520
    • /
    • 2004
  • We investigate a series of synthesized ${\beta}$-methoxyacrylate analogues for their 3D QSAR & HQSAR against Magnaporthe grisea (Rice Blast Disease). We perform the three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) studies, using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) procedure. In addition, we carry out a two-dimensional Quantitative Structure-Activity Relationship (2D-QSAR) study, using the Hologram QSAR (HQSAR). We perform these studies, using 53 compounds as a training set and 10 compounds as a test set. The predictive QSAR models have conventional $r^2$ values of 0.955 at CoMFA, 0.917 at CoMSIA, and 0.910 at HQSAR respectively; similarly, we obtain cross-validated coefficient $q^2$ values of 0.822 at CoMFA, 0.763 at CoMSIA, and 0.816 at HQSAR, respectively. From these studies, the CoMFA model performs better than the CoMSIA model.

Strength Characteristic of Non-cement Matrix using Paper Ash (제지애쉬를 활용한 무시멘트 경화체의 강도 특성)

  • Kim, Yun-Mi;Kim, Heon-Tae;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.196-197
    • /
    • 2013
  • This study is the experiment for manufacturing the Lightweight non-cement matrix based on the Blast furnace slag. And, the matrix was manufactured matrix by generating the bubble just by the reaction of KOH that is the alkali accelerator and paper ash, instead of the general foaming agent, that is the waste managed of incineration the pulp sludge generated in the process of manufacturing the paper. Consequently, the density according to the addition rate of KOH represented the tendency to increase. And it showed up that density of the matrix adding KOH 22.5% was the lowest. As to the strength test result, strength following addition rate of KOH increased. Since the bubble is generated in the reaction of KOH and paper ash, this shows the very low intensity but it is determined to be the result that the amount of vacant space is decreased because the bubble generated in the mixture process comes up as the specific gravity difference.

  • PDF

Analysis on the Mass Loss in Self-blast type $SF_6$ Gas Circuit Breaker (Self-blast형 $SF_6$ 가스 차단기의 노즐용삭 분석)

  • Jeong, Young-Woo;Bae, C.Y.;Ahn, H.S.;Choi, J.W.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1422-1423
    • /
    • 2006
  • In our study, the PTFE nozzle ablation in the high-voltage self-blast type $SF_6$ gas circuit breaker was investigated. The test circuit breaker has the structure that the pin electrode is moving and the pressure reservoir volume and the dimension is almost same as commercial 145kv 40kA circuit breaker for similar result in real circuit breaker. The variation of current and arcing time was the range of $36kA_{rms}$(symmetry) - $40kA_{rms}$(asymmetry) and 10-16 ms. From the measured data the tendecy of the mass loss of the nozzle to current load and arc energy was estimated. In this process, the distance from the arc to nozzle(PTFE) surface, area which was exposed to arc and stroke contour was considered. These results will be used to enhance the accuracy of the computational fluid dynamics analysis in circuit breaker and estimate the residual life time of a circuit breaker.

  • PDF

Performance Evaluation of Cold-Recycling Asphalt Mixtures with an Inorganic Additive (무기질 첨가제를 사용한 상온 재활용 아스팔트 혼합물의 공용성 평가)

  • Kim, kyungsoo;Kim, HyunKyum;Kim, WonJae;Park, ChangKyu;Lee, HyunJong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • PURPOSES : The purpose of this study is to estimate the optimum content of an inorganic additive for cold-recycled asphalt mixtures and evaluate its performance. METHODS : An indirect tensile test, a tensile-strength ratio test, and an indirect tensile-fatigue test were conducted on cold-recycling asphalt mixtures with various additives. RESULTS : The laboratory performance tests indicated that granulated blast-furnace slag mixed with inorganic and cement activators provided optimum performance. The performance results of the cold-recycled asphalt pavement were similar to the inorganic and cement activators' performance in terms of the indirect tensile strength, tensile strength ratio, and indirect tensile-fatigue test. CONCLUSIONS : Overall, the performance of a cold-recycled asphalt mixture using inorganic additives and emulsion asphalt was comparable to a warm-recycled asphalt mixture. However, more experiments aimed at improving its performance and studying the effect of the inorganic additives must be conducted.