• Title/Summary/Keyword: blast test

Search Result 717, Processing Time 0.022 seconds

Hydration Properties of High Volume Cement Matrix Using Blast Furnace Slag and Alkaline Aqueous by Electrolysis (고로슬래그 및 전기분해한 알칼리 수용액을 사용한 하이볼륨 시멘트 경화체의 수화특성)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This experimental study is purposed to analyze the effect of alkaline aqueous solution by electrolysis on strength development in order to develop high volume cement matrix using industrial by-products. Blast furnace slag was used a binder, and an alkaline aqueous solution obtained by electrolyzing pure water was used as an alkali activator. The hydration properties of these specimens were then investigated by compressive strength test, XRD and observation of micro-structures using SEM. As a result, we found that compressive strength increased with the addition of alkaline aqueous solution which cement matrix incorporating blast furnace slag. But those strength decreased reversely when replacing ratio of blast furnace slag was increased. It is judged that results of engineering properties evaluation on the binder and alkaline aqueous solution are useful as a basic data for mixtures design and evaluation properties of high volume cement matrix using by-products.

Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag (플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the strength development and durability of geopolymer mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless geopolymer concrete. In order to compare with the geopolymer mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to freezing-thawing of the geopolymer mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, and improve the resistance of freezing-thawing of approximately 20%, but promote the velocity of carbonation of 2.2~3.5 times.

An Experimental Study on Permeability Characteristics of Blast Furnace Slag Concrete (고로슬래그 콘크리트의 투수특성에 관한 실험적 연구)

  • Paik, Shinwon;Oh, Daeyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.9-12
    • /
    • 2013
  • The pavement is generally used on the highways, local loads, roads for bicycle riding and neighborhood living facility such as parking lot, plaza, park and sports facilities. However, the pavement material that is usually used on the most of roads is impermeable asphalt-concrete and cement-concrete. If the pavement material is impermeable, many problems can be happened on the drainage facilities in the rainy season. Additionally, a lot of rainwater on the pavement surface cannot permeate to the underground and flows to the sewage ditch, stream and river, etc. If a lot of rainwater flows at once, the floods can be out along the streams and rivers. So, underground water can be exhausted. Micro organisms cannot live in the underground. Recently, many studies has been conducted to exploit the permeable concrete that has high performance permeability. However, it is required to develop the permeable concrete which has high strength and durability. In this study, permeable and strength tests were performed to investigate the permeable characteristics of porous concrete according to fine aggregate content and substitution ratio of blast furnace slag. In this test, crushed stones with 10~20 mm and sand with 5~10 mm were used as a coarse aggregate and a fine aggregate respectively. The substitution ratio of blast furnace slag to cement weight is 0 %, 15 %, and 30 %. The ratio of fine aggregate to total aggregate is 0 %, 18 %, and 35 %. As a result, permeability coefficient was decreased according to fine aggregate ratio of total aggregate. Compressive strength was also decreased according to substitution ratio of blast furnace slag.

Reaction Properties of Non-Cement Mortar Using Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 무시멘트 경화체의 반응 특성)

  • Park, Sun-Gyu;Kwon, Seung-Jun;Kim, Yun-Mi;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.392-399
    • /
    • 2013
  • The purpose of this study is to identify the manufacturing possibility of non-cement mortar using blast furnace slag and alkali accelerator. In this experimental study, the blast furnace slag which is the by-product of the steel industry substitute for cement, and the potassium hydroxide(KOH), calcium hydroxide ($Ca(OH)_2$) and sodium hydroxide(NaOH) as stimulus were added to each specimen. And the analysis on reaction property of non-cement mortar was conducted by measurement such as flexural and compressive strength, XRD, EDS and SEM. From the test results, it can be founded that $SiO_2$ and CaO included in the blast furnace slag are released and make the calcium silicate hydrate like the hydration reaction of the cement. Also, the continued study is need to reduce emission of $CO_2$ because of major content in filed of the building construction.

Behavior Analysis of Concrete Structure under Blast Loading : (I) Experiment Procedures (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (I) 실험수행절차)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Choi, Jong Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.557-564
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast overpressure is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, information and test results related to the blast experiment of internal and external have been limited due to military and national security reasons. Therefore, in this paper, to evaluate blast effect on reinforced have concrete structure and its protective performance, blast tests are carried out with $1.0m{\times}1.0m{\times}150mm$ reinforce concrete slab structure at the Agency for Defence Development. The standoff blast distance is 1.5 m and the preliminary tests consists with TNT 9 lbs and TNT 35 lbs and the main tests used ANFO 35 lbs. It is the first ever blast experiment for nonmilitary purposes domestically. In this paper, based on the basic experiment procedure and measurement details for acquiring structural behavior data, the blast experimental measurement system and procedure are established details. The procedure of blast experiments are based on the established measurement system which consists of sensor, signal conditioner, DAQ system, software. It can be used as basic research references for related research areas, which include protective design and effective behavior measurements of structure under blast loading.

Evaluation of Material Properties Variations of Cementitious Composites under High Strain Rate by SHPB Test and Image Analysis (SHPB 시험 및 영상분석을 통한 고변형율 속도 하의 시멘트 복합체 물성 변화 평가)

  • Cho, Hyun-Woo;Lee, Jang-Hwa;Min, Ji-Young;Park, Jung-Jun;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.83-91
    • /
    • 2015
  • Under impact or blast loads, concrete behaves with different mechanical properties comparing to the static loading conditions. In other words, with high strain rate, mechanical properties of concrete vary significantly. To evaluate the compressive characteristics of concrete with high strain rate, SHPB(Split Hopkinson Pressure Bar) test is typically used. However, because SHPB test method has been developed for metallic materials, it is necessary to verify the applicability of SHPB for brittle materials such as concrete. Also, there have been little researches on the evaluations of mechanical characteristics of UHPC under high strain rate conditions. This study has been performed to evaluate and analyse the compressive characteristics of plain concrete and UHPC with SHPB test apparatus. Also, to verify the applicability of SHPB test for concrete, direct displacement image analysis with high speed camera was performed for the comparisons with analytical solutions for SHPB test.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Performance of eco-friendly mortar mixes against aggressive environments

  • Saha, Suman;Rajasekaran, Chandrasekaran;Gupta, Prateek
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • Past research efforts already established geopolymer as an environment-friendly alternative binder system for ordinary Portland cement (OPC) and recycled aggregate is also one of the promising alternative for natural aggregates. In this study, an effort was made to produce eco-friendly mortar mixes using geopolymer as binder and recycled fine aggregate (RFA) partially and study the resistance ability of these mortar mixes against the aggressive environments. To form the geopolymer binder, 70% fly ash, 30% ground granulated blast furnace slag (GGBS) and alkaline solution comprising of sodium silicate solution and 14M sodium hydroxide solution with a ratio of 1.5 were used. The ratio of alkaline liquid to binder (AL/B) was also considered as 0.4 and 0.6. In order to determine the resistance ability against aggressive environmental conditions, acid attack test, sulphate attack test and rapid chloride permeability test were conducted. Change in mass, change in compressive strength of the specimens after the immersion in acid/sulphate solution for a period of 28, 56, 90 and 120 days has been presented and discussed in this study. Results indicated that the incorporation of RFA leads to the reduction in compressive strength. Even though strength reduction was observed, eco-friendly mortar mixes containing geopolymer as binder and RFA as fine aggregate performed better when it was produced with AL/B ratio of 0.6.

Resisitance of Varieties to Rice Blast in Korea I. Japonica Type of Rice Varieties (한국(韓國) 수도품종(水稻品種)의 도열병(稻熱病) 저항성(低抗性)에 관(關)하여 I. 일본형품종(日本型品種))

  • Choi, Jae Eul;Park, Jong Seong;Park, Nam Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.1-18
    • /
    • 1989
  • This experiment was undertaken to clarify derivation of resistance of Japonica type of rice varieties to rice blast in Korea and to classify Japonica type of rice varieties on the basis of their rice blast reaction in the blast nuisery test. 1. The resistance of Iljin, Kwancheok 9, Koshi, Baedal and Paldal, Jaekeon, Sinpung, Jinheung, Hokwang and Palkeum, and Gwangmyungbyeo and Yeongdeogbyeo to rice blast was derived from Kyudai Taicho Asahi 3, Futaba and 2067, respectively. 2. The resistance of Kwanok, Mankyeong and Nongbaek to the rice blast was derived from Kanto 55, Hokwang and Kusabue, and Ishigarisiroge, respectively. 3. The resistance of Seomjinbyeo, Sinseonchalbyeo, Donghaebyeo and Tamjinbyeo to the rice blast was derived from Milyang 20 and the source of resistance to the rice blast in Jinjubyeo and Daecheongbyeo was HR 769 or HR 1590. 4. The resistance of Dobongbyeo, Gwanagbyeo and Chiagbyeo to the rice blast was derived from Tjina, Kongo and Kuik 90, respectively. 5. The resistance of Seolagbyeo, Seonambyeo, Kihobyeo, Namyangbyeo, Samnambyeo, Seohaebyeo, Whaseongbyeo, Daegwanbyeo and Taeseongbyeo, and Sobaegbyeo, Odaebyeo and Unbongbyeo to the rice blast was derived from Fuji 280 and Fuji 269, respectively. 6. The source of resistance to the rice blast in Cheonmabyeo and Baegambyeo was BL 7 and Nongbaek, the resistance of Dongjinbyeo and Sangpungbyeo to the rice blast was derived from Satominori and Simokita, respectively. 7. Japonica type of rice varieties was classified into eleven varietal groups according to their reaction to the blast as follows. Eight varieties of Jinheung group, two varieties of Dongjinbyeo group, two varieties of Jinjubyeo group, three varieties of Gwanagbyeo group, four varieties of Sobaegbyeo group, one variety of Nongbaek group, two varieties of Baegambyeo group, five varieties of Sinseonchalbyeo group, five varieties of Seonambyeo group, two varieties of Taeseongbyeo group and some variety of Nagdongbyeo group.

  • PDF

A Study on Corrosion Resistance of the Reinforement in Concrete Using Blast-Furnace Slag Powder (고로슬래그미분말을 사용한 콘크리트의 염화물이온에 의한 철근부식 저항성 연구)

  • Kim Eun-Kyun;Kim Jin-Keun;Lee Dong-Hyuk;Kim Young-Ung;Kim Yong-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.1-9
    • /
    • 2004
  • This paper represents the permeability of chloride ions and the corrosion performance in the concrete blended with granulate blast furnace slag exposed to chloride environment. An ordinary cement (type I ) and sulfate resisting cement(type V) were used for the experiment. The two cements were combined with $0\%$, $25 \%$, $40\%$, and $55\%$ of the granulated blast furnace slag. The accelerated permeability tests of chloride ions were performed in accordance with ASTM C1202, and the accelerated corrosion tests of steel were carried out by using the method of immersion/drying cycles. After water curing 28 days, 56 days and 91 days, these tests were conducted until 30 cycles. In every cycle, test specimens were wetted in $3\%$ NaCl solution for three days and dried again in $60^{\circ}C$ air for four days. As an experimental results, the diffusion coefficient of chloride ions of the ordinary cement Concrete Combined granulated blast furnace slag was much lower than that of non granulated blast furnace slag concrete. Moreover, the diffusion coefficient of chloride ions of sulfate resisting cement concrete was higher than that of ordinary cement concrete. On the basis of the results of accelerated corrosion tests, corrosion resistance of the concrete mixed with granulated blast furnace slag shows good to corrosion resistance, however, the concrete with sulfate resisting cement shows bad to corrosion resistance.