DOI QR코드

DOI QR Code

Evaluation of Material Properties Variations of Cementitious Composites under High Strain Rate by SHPB Test and Image Analysis

SHPB 시험 및 영상분석을 통한 고변형율 속도 하의 시멘트 복합체 물성 변화 평가

  • Received : 2015.04.27
  • Accepted : 2015.06.16
  • Published : 2015.07.30

Abstract

Under impact or blast loads, concrete behaves with different mechanical properties comparing to the static loading conditions. In other words, with high strain rate, mechanical properties of concrete vary significantly. To evaluate the compressive characteristics of concrete with high strain rate, SHPB(Split Hopkinson Pressure Bar) test is typically used. However, because SHPB test method has been developed for metallic materials, it is necessary to verify the applicability of SHPB for brittle materials such as concrete. Also, there have been little researches on the evaluations of mechanical characteristics of UHPC under high strain rate conditions. This study has been performed to evaluate and analyse the compressive characteristics of plain concrete and UHPC with SHPB test apparatus. Also, to verify the applicability of SHPB test for concrete, direct displacement image analysis with high speed camera was performed for the comparisons with analytical solutions for SHPB test.

충돌 또는 폭발 하중 하의 콘크리트는 정적 하중에서 가지는 재료물성과 다른 거동을 보이게 된다. 즉, 고변형율 하의 콘크리트의 재료물성은 크게 변화하게 되며, 이를 시험평가하기 위한 방법 중 압축강도와 관련된 시험법으로는 SHPB(Split Hopkinson Pressure Bar) Test가 있다. 그러나, SHPB Test는 금속과 같은 인성재료를 위해 개발된 시험방법으로서 취성재료인 콘크리트에 적용이 가능한지에 대한 검토가 추가적으로 필요하며, UHPC와 같은 섬유보강 초고성능 콘크리트에 대한 연구는 미미한 실정이다. 이에 본 연구에서는 콘크리트 시험체를 위해 제작된 SHPB Test 장비를 사용하여 일반 콘크리트 및 UHPC 시험체에 대한 시험평가를 수행하였으며, SHPB Test의 적용 적정성을 파악하기 위하여 초고속카메라를 활용한 변위영상 분석을 통한 검증을 수행하였다.

Keywords

References

  1. Chung, S. T., Park, C. Y., Jin, D. H., Kim, T. Y., Lee, J. Y., Rhee, I. S. (2013), "Development of Intelligent Multiple Camera System for High-Speed Impact Experiment", Trans. Korean Soc. Mech. Eng. A., 37(9), pp.1093-1098. https://doi.org/10.3795/KSME-A.2013.37.9.1093
  2. Kang, M. S., Kang, H. M., Kim, S. K., Cheon, D. S., Kaneko, K., Cho, S. H. (2012), "Experimental Study on Deformation and Failure Behavior ofLimestones under Dynamic Loadings", Tunnel and Underground Space, 22(5), pp.339-345 https://doi.org/10.7474/TUS.2012.22.5.339
  3. Lee, O. S., Lee, J. W., Kim, K. J. (2004), "Dynamic deformation behavior of rubber and ethylene copolymer under high strain rate compressive loading", Journal of The Society of Precision Engineering, 21(6), pp. 122-130.
  4. Seo, S. W. and min, O. K. (1998), "Size effect of aluminum compression specimen in SHPB test", The Korean Socirty of Mechanical Engineering, A, pp. 339-343
  5. Bischoff, P.H. and Perry, S.H. (1991), "Compressive behaviour of concrete at high strain rates", Journal of Materials and Structures, 24(6), pp.425-450. https://doi.org/10.1007/BF02472016
  6. Grote, D.L., Park, S.W., Zhou, M. (2001), "Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization", International Journal of Impact Engineering, 25(9) pp.869-886. https://doi.org/10.1016/S0734-743X(01)00020-3
  7. Lai, J. and Sun, W. (2008), "Dynamic Mechanical Behaviour of Ultra-high Performance Fiber Reinforced Concretes", Journal of Wuhan University of Technology-Mater, 23(6), pp.938-945. https://doi.org/10.1007/s11595-007-6938-5
  8. Lindholm, U.S. (1964) "Seom experiments with the split hopkinson pressure bar", Journal of the Mechanics and Physics of Solids, Vol.12, pp. 317-335. https://doi.org/10.1016/0022-5096(64)90028-6
  9. Malvar, L.J., and Crawford, J.E. (1998), "Dynamic increase factors for concrete", Twenty-Eighth DDESB Seminar, Orlando, USA, pp.1-17.
  10. Marais, S.T., Tait, R.B., Cloete T.J. and Nurick, G.N. (2004),"Material testing at high strain rate using the split Hopkinson pressure bar", Latin American Journal of Solids and Structures, Vol.1, pp.319-339.
  11. Rong, Z., Sun, W., Zhang Y. (2010), "Dynamic compression behavior of ultra-high performance cement based composites", International Journal of Impact Engineering, 37(5), pp. 515-520. https://doi.org/10.1016/j.ijimpeng.2009.11.005
  12. ACI 349-06, (2006), Code Requirements for Nuclear Safety-Related Concrete Structures, American Concrete Institute
  13. CEB, (1993), CEB-FIP Model Code 1990, Redwood Books, Trowbridge, Wiltshire, UK