• Title/Summary/Keyword: blast furance slag

Search Result 13, Processing Time 0.028 seconds

Development of Water-resistant Grout according to Blast Furnace Slag Fine Powder and Calcium Hydroxide Content (고로슬래그 미분말과 수산화칼슘 함유량에 따른 차수그라우트재 개발)

  • Seo, Hyeok;Park, Kyungho;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.541-555
    • /
    • 2020
  • The grouting method is used for reinforcing and waterproofing the soft ground, increasing the bearing capacity of structures damaged by lowering or subsidence due to rise and vibration, and for ordering. This study attempted to develop a blast furnace slag-based cementless grout material to increase the strength and hardening time of the grout material using reinforcing fibers. In this regard, in this study, it was used in combination with calcium hydroxide, which is an alkali stimulant of the three fine powders of blast furnace slag, and the content of calcium hydroxide was used by substituting 10, 20, and 30% of the fine powder of blast furnace slag. In addition, in order to compare the strength according to the presence or absence of reinforcing fibers, an experiment was performed by adding 0.5% of each fiber. As the content of carbon fibers and aramid fibers increased, the uniaxial compressive strength increased, and it was confirmed that the crosslinking action of the fibers in the grout material increased the uniaxial compressive strength. In addition, it was confirmed that the gel time sharply decreased as the content of the alkali stimulate increased.

The Properties of Polyester Mortars with Various Fillers (충전재에 다른 폴리에스테르 모르타르의 특성)

  • 김성범;윤성진;최낙운;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.449-452
    • /
    • 2003
  • The objective of this study is to investigate the basic properties of polyester mortars using ground calcium carbonate(GCC), blast furance slag(BFS), fly ash(FA), ordinary portland cement(OPC) as fillers. Particle size distribution, particle shape and resin absorption of GCC, BFS, FA and OPC are checked. Polyester mortars with GCC, BFS, FA and OPC are prepared with various MEKPO content and tested for working life. The flexural and compressive strengths of the polyester mortars with MEKPO content of 0.5phr are evaluated. As a test result, the average sizes of GCC, BFS, FA and OPC are 9.7$\mu\textrm{m}$, 11.6$\mu\textrm{m}$, 21.2$\mu\textrm{m}$, 29.9$\mu\textrm{m}$. Resin absorption of FA is 1.5times larger than other fillers. The polyester mortar with FA at a MEKPO content of 0.5phr has the longest working life and the maximum flexural and compressive strengths.

  • PDF

Quality Properties of Zero Cement Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Mixing Factors (순환잔골재를 사용한 무 시멘트 고로슬래그 모르터의 배합요인에 따른 품질특성)

  • Han, Cheon-Goo;Son, Seok-Heon;Park, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.70-77
    • /
    • 2010
  • This study is to investigate experimentally the influence of mixing factors, such as a mortar mix proportion of non-cement mortar, flow, and W/B, on quality characteristics of blast furnace slag powder mortar incorporating dry type recycled fine aggregates. In the characteristics of fresh mortar, the W/B increased according to the increase in the flow due to the increase in water contents, but air contents decreased due to loss of air contrary to the increase in the W/B. In the case of hardened mortar, the compressive strength showed a decrease due to the highly determined W/B inversely according to the increase in the flow through the entire age in which the compressive strength increased proportionally according to the increase in the B/W. Also, the increasing rate of such compressive strength increased more largely due to the latent hydraulic property of the BS according to the passage of the age. The flexural strength at the age of 28 days according to the increase in the B/W represented a similar level in strength values without any increases. The flexural strength for the compressive strength was distributed as a range of 1/2 ~ 1/3 and that showed a higher range than that of conventional concretes.

  • PDF