• Title/Summary/Keyword: blast action

Search Result 31, Processing Time 0.029 seconds

Freeze-Thaw Resistance of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성)

  • 문한영;김성수;이승태;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.725-730
    • /
    • 2002
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 210 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The XRD, SEM and EDS analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Freeze-Thaw Resistance and Void Characteristic of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성 및 공극특성)

  • Kim, Seong-Soo;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.589-592
    • /
    • 2006
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 300 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The MIP analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Slump Loss of High Strength Concrete Containing Mineral Admixture and Gypsum (광물질 혼화재 및 석고를 사용한 고강도 콘크리트의 슬럼프 손실)

  • 김기형;최재진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 1997
  • High strength concrete(HSC) using high range water reducing admixture (HRWR) has the defect which severe slump loss occurs according to elapsed time. For using HSC without any trouble, special caution and countermeasure against this problem are necessary. In this study, for minimizing the slump loss of HSC, mineral admixture( flyash, ground granulated blast furnace slag ) and gypsum were used experimentally. Flyash and ground granulated blast furnace slag are effective in reducing the slump loss of HSC. Especially, the slump loss of HSC containing mineral admixture and gypsum Is minimized by the aggregation inhibiting action of gypsum. Cement substituted with flyash 30% or ground granulated blast furnace slag 50% by weight are very effective in minimizing the slump loss.

  • PDF

Characteristics of Antiwashout Underwater Concrete with the Mineral Admixtures for Underwater Concrete Structures (수중 콘크리트 구조물을 위한 광물질 혼화제를 첨가한 수중불분리성 콘크리트의 특성)

  • 원종필;임경하;박찬기;김완영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.90-98
    • /
    • 2002
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aim of this research is to evaluate the fundamental characteristics and permeability of antiwashout underwater concrete with fly ash and blast-furnace slag. Test Results of antiwashout underwater concrete with fly ash and blast-furnace slag fluence can provide its excellent fundamental characteristics and resistance of permeability.

Seismic and Blast Design of Industrial Concrete Structures with Precast Intermediate Shear Wall System (프리캐스트 중간전단벽 시스템이 사용된 콘크리트 산업 시설물의 내진 및 방폭설계)

  • Lee, Won-Jun;Kim, Min-Su;Kim, Seon-hoon;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Code-compliant seismic design should be essentially applied to realize the so-called emulative performance of precast concrete (PC) lateral force-resisting systems, and this study developed simple procedures to design precast industrial buildings with intermediate precast bearing wall systems considering both the effect of seismic and blast loads. Seismic design provisions specified in ACI 318 and ASCE 7 can be directly adopted, for which the so-called 1.5Sy condition is addressed in PC wall-to-wall and wall-to-base connections. Various coupling options were considered and addressed in the seismic design of wall-to-wall connections for the longitudinal and transverse design directions to secure optimized performance and better economic feasibility. On the other hand, two possible methods were adopted in blast analysis: 1) Equivalent static analysis (ESA) based on the simplified graphic method and 2) Incremental dynamic time-history analysis (IDTHA). The ESA is physically austere to use in practice for a typical industrial PC-bearing wall system. Still, it showed an overestimating trend in terms of the lateral deformation. The coupling action between precast wall segments appears to be inevitably required due to substantially large blast loads compared to seismic loads with increasing blast risk levels. Even with the coupled-precast shear walls, the design outcome obtained from the ESA method might not be entirely satisfactory to the drift criteria presented by the ASCE Blast Design Manual. This drawback can be overcome by addressing the IDTHA method, where all the design criteria were fully satisfied with precast shear walls' non-coupling and group-coupling strength, where each individual or grouped shear fence was designed to possess 1.5Sy for the seismic design.

Numerical analyses for the structural assessment of steel buildings under explosions

  • Olmati, Pierluigi;Petrini, Francesco;Bontempi, Franco
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.803-819
    • /
    • 2013
  • This paper addresses two main issues relevant to the structural assessment of buildings subjected to explosions. The first issue regards the robustness evaluation of steel frame structures: a procedure is provided for computing "robustness curves" and it is applied to a 20-storey steel frame building, describing the residual strength of the (blast) damaged structure under different local damage levels. The second issue regards the precise evaluation of blast pressures acting on structural elements using Computational Fluid Dynamic (CFD) techniques. This last aspect is treated with particular reference to gas explosions, focusing on some critical parameters (room congestion, failure of non-structural walls and ignition point location) which influence the development of the explosion. From the analyses, it can be deduced that, at least for the examined cases, the obtained robustness curves provide a suitable tool that can be used for risk management and assessment purposes. Moreover, the variation of relevant CFD analysis outcomes (e.g., pressure) due to the variation of the analysis parameters is found to be significant.

Study of Thiazoline Derivatives for the Design of Optimal Fungicidal Compounds Using Multiple Linear Regression (MLR)

  • Han, Won-Seok;Lee, Jin-Kak;Lee, Jun-Seok;Hahn, Hoh-Gyu;Yoon, Chang-No
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1703-1706
    • /
    • 2012
  • Rice blast is the most serious disease of rice due to its harmfulness and its world wide distribution. $Magnaporthe$ $grisea$ is the cause of rice blast disease and destroys rice enough to feed several tens of millions of people each year. Fungicides are commonly used to control rice blast. But $M.$ $grisea$ acquires resistance to chemical treatments by genetic mutations. 2-Phenylimino-1,3-thiazolines were proposed as a novel class of fungicides against $M.$ $grisea$ in the previous study. To develop compounds with a higher biological activity, a new series of 2-phenylimino-1,3-thiazolines was synthesized and its fungicidal activity was determined against $M.$ $grisea$. The QSAR analysis was carried out on a series of 2-phenylimino-1,3-thiazolines. The QSAR results showed the dependence of fungicidal activity on the structural and physicochemical features of 2-phenylimino-1,3-thiazolines. Our results could be used as guidelines for the study of the mode of action and further design of optimal fungicides.

A Study on the Numerical Modelling of Blast Source (발파원 모델링을 위한 수치해석적 고찰)

  • 백승규;류창하
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.37-42
    • /
    • 2003
  • The source of rock breakage by explosive blasting is the energy released from an explosive. It is transmitted to the surrounding rock mass causing various types of fracture of rock material. The reaction of explosives and the resulting action on the surrounding rock mass are completed in very short tine, making it almost impossible to observe the processes occurring in the interior of the rock mass. In this study several input parameters are investigated by numerical modelling of blast source and dynamic response of rock mass. It is shown that damping coefficient and rising time are major parameters affecting dynamics response of rock mass.

Development of Chloride-ion Penetration Device for Concrete Considering Pressure Condition (압력조건을 고려한 콘크리트의 염화물이온 침투 장치 개발)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.25-26
    • /
    • 2018
  • In this study, the device was developed for evaluating the effect of pressure on chloride ion penetration of concrete. And chloride-ion penetration depth and water soluble chloride contents was evaluated concrete using ordinary portland cement and blast-furnace slag cement using developed device. As a result, chloride ion penetration of concrete was promoted according to the action of pressure and the exposure period. and the incorporation of blast-furnace slag was effective for chloride attack resistibility under pressure.

  • PDF

Finite Element Analysis of the Effect of Chloride Ion on the Coastal Concrete Structure with Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 해양콘크리트 구조물의 염분침투해석)

  • 여경윤;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.945-950
    • /
    • 2000
  • Coastal concrete structure is harmed by physical and chemical action of sea water, impact load, meteorological effect and etc. especially, premature reinforcement corrosion in concrete exposed to sea water has an important problem. In this study, the behavior of chloride ions penetrated through the coastal concrete structure with ordinary portland cement or ground granulated blast furnace slag(GGBFS) was modeled. The physicochemical processes including the diffusion of chloride and the chemical reaction of chloride ion with calcium silicate hydrate and the other constituents of hardened cement paste such as$C_3A$ and $C_4AF$were analyzed by using the Finite Element Method. From analysis result, the corrosion of concrete structure with GGBFS begins 1.69~1.76 times later than that of concrete structure with ordinary portland cement.