• Title/Summary/Keyword: blade model

Search Result 783, Processing Time 0.028 seconds

An Experimental Study on Noise Characteristics of Propeller Cavitation Inception (프로펠러 캐비테이션의 초기발생과 소음특성에 대한 실험연구)

  • Lee, Phil-Ho;Ahn, Byoung-Kwon;Lee, Chang-Sup;Lee, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Cavitation is the formation of vapour bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapor pressure. Various types of cavitations are generated on the propeller blades. As cavity bubbles passing the blade are forced to oscillate in size or shape and come to collapse, they cause very strong local acoustic waves in the fluid and radiate noise. Comparing the Sound Pressure Level(SPL) before and after cavitation, SPL increases 2dB per 1 knot increase in ship speed above the cavitation inception speed(CIS). Consequently, the CIS is an important criteria to design silent propellers. In this work, experimental measurements of radiated noise according to various types of cavitations from the model propeller are carried out in a large cavitation tunnel and their acoustical characteristics are extensively investigated.

Numerical and experimental investigation on the performance of three newly designed 100 kW-class tidal current turbines

  • Song, Mu-Seok;Kim, Moon-Chan;Do, In-Rok;Rhee, Shin-Hyung;Lee, Ju-Hyun;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.241-255
    • /
    • 2012
  • Three types of 100 kW-class tidal stream turbines are proposed and their performance is studied both numerically and experimentally. Following a wind turbine design procedure, a base blade is derived and two additional blades are newly designed focusing more on efficiency and cavitation. For the three designed turbines, a CFD is performed by using FLUENT. The calculations predict that the newly designed turbines perform better than the base turbine and the tip vortex can be reduced with additional efficiency increase by adopting a tip rake. The performance of the turbines is tested in a towing tank with 700 mm models. The scale problem is carefully investigated and the measurements are compared with the CFD results. All the prediction from the CFD is supported by the model experiment with some quantitative discrepancy. The maximum efficiencies are 0.49 (CFD) and 0.45 (experiment) at TSR 5.17 for the turbine with a tip rake.

A Study on the Design of a Biased Asymmetric Preswirl Stator Propulsion System (편재된 비대칭형 전류고정날개 추진시스템 설계에 관한 연구)

  • Kang, Yong-Deok;Kim, Moon-Chan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.32-36
    • /
    • 2003
  • This paper deals with a theoretical method for the design of a biased asymmetric preswirl stator propulsion system which has been used to increase efficiency by the recovery of a propeller slipstream rotational energy by the counter rotating flow of a stator. In the case of full slow-speed ship, the upward flow is generated at the propeller plane by the after body hull form. The generated upward flow cancells the rotating flow of the propeller at the starboard part while it increases at port part. A biased asymmetric preswirl stator propulsion system consists of three blades at the port and one blade at the starboard which can recover the biased rotating flow effectively. This paper provides the design concept which gives more simple and a high degree of efficiency. The model tests for the designed compound propulsion system will be carried out later.

  • PDF

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Analysis of Wake and Noise of a Fan in Finite Duct (유한관내에서 축류팬 후류 및 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.100-105
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy. and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lawson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

Numerical Study on Steady and Unsteady Flow Characteristics of Nozzle-Rotor Flow in a Partial Admission Supersonic Axial Turbine with Sweep Angle (스윕 각이 적용된 부분 흡입형 초음속 축류 터빈의 정상, 비정상 공력 특성에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.173-179
    • /
    • 2012
  • Steady and unsteady three-dimensional RANS simulations have been performed on partial admission supersonic axial turbine having backward/forward sweep angles(${\pm}15^{\circ}$) and the results are compared with each other. The objective of this paper is to study the effect of unsteadiness on turbine flow characteristics and performances. The all results indicated that the losses of unsteady simulations were greater than those of steady cases. It was also shown that BSW model give the effect on the reducing of mass flow rates of tip leakage. In unsteady simulation, the increase of t-to-s efficiency at Rotor Out plane was observed more clearly.

  • PDF

Load and Safety Analysis for Plow Operation in Dry Fields (건답에서 쟁기작업의 부하특성 및 안전도 분석)

  • Lee, Ju-Yeon;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2019
  • This study derives load characteristics and analyzes the safety of plowshares operating in dry fields. We mounted a three-blade, reversible plow on a 23.7 kW tractor and measured the plow's tractive force as well as the torque from the engine output shaft on the rear axle under various working speeds (L4, M1, M2, M3). We chose a Korean test site of Seomyeon, Chuncheon with sandy soil texture, as determined using the USDA method. We constructed the load spectrum for torque and tractive force using measured data and derived the fatigue life of the plowshare from a stress-cycle (S-N) curve of the plow material. Our results show that the M3 gear maximizes the driving shaft torque loads and, applying the tractive force load spectrum, creates a cumulative damage sum of $4.14{\times}10^{-5}$. Considering sampling time, we estimate a fatigue life of 805 hours while using the M3 gear. When using the other working speeds, however, all of the stress levels fell within the endurance limits and, therefore, our model predicts infinite plowshare lifetimes. For this analysis, we used a yield strength of 1,079 MPa for the plowshare and static safety factors, analyzed using the maximum stress, between 6.83 and 8.63 under each working speed.

Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine (부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석)

  • Kim, Junbae;Shin, Hyunkyoung
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

Study of Stray-light Analysis and Suppression Methods for the Spectroscopic System of a Solar-radiation Observer Instrument

  • Zheng, Ru;Liu, Bo;Wang, Lingyun;Gao, Yue;Li, Guangxi;Li, Changyu
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.220-228
    • /
    • 2021
  • To improve the measurement accuracy of a solar-radiation observer instrument, aiming at the problem of multiorder-stray-light interference caused by the diffraction of the flat-field concave grating in the spectroscopic system, straylight suppression methods for different forms of optical traps are studied. According to the grating surface-scattering distribution-function model, the bidirectional scattering distribution function (BSDF) of a dust-polluted surface and the flat-field concave grating's transition area of the spectroscopic system is calculated, and a Lyot stop with blade baffle is designed to suppress this kind of stray light. For diffraction multiorder stray light, based on the theory of light-energy transmission, a design for precise positioning of the trench optical trap is proposed. The superiority of the method is verified through simulation and actual measurement. The simulation results show that in a spectroscopic system approximately 160 mm × 140 mm × 80 mm in size, the energy of the stray light is reduced by one order of magnitude by means of the trench optical trap and Lyot stop, and the number of beams is reduced from 5664 to 1040. The actual measurements show that the stray-light-suppression efficiency is about 69.4%, which is effective reduction of the amount of stray light.