• Title/Summary/Keyword: bivariate data

Search Result 351, Processing Time 0.021 seconds

Bivariate skewness, kurtosis and surface plot (이변량 왜도, 첨도 그리고 표면그림)

  • Hong, Chong Sun;Sung, Jae Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.959-970
    • /
    • 2017
  • In this study, we propose bivariate skewness and kurtosis statistics and suggest a surface plot that can visually implement bivariate data containing the correlation coefficient. The skewness statistic is expressed in the form of a paired real values because this represents the skewed directions and degrees of the bivariate random sample. The kurtosis has a positive value which can determine how thick the tail part of the data is compared to the bivariate normal distribution. Moreover, the surface plot implements bivariate data based on the quantile vectors. Skewness and kurtosis are obtained and surface plots are explored for various types of bivariate data. With these results, it has been found that the values of the skewness and kurtosis reflect the characteristics of the bivariate data implemented by the surface plots. Therefore, the skewness, kurtosis and surface plot proposed in this paper could be used as one of valuable descriptive statistical methods for analyzing bivariate distributions.

THE BIVARIATE GAMMA EXPONENTIAL DISTRIBUTION WITH APPLICATION TO DROUGHT DATA

  • Nadarajah, Saralees
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.221-230
    • /
    • 2007
  • The exponential and the gamma distributions have been the traditional models for drought duration and drought intensity data, respectively. However, it is often assumed that the drought duration and drought intensity are independent, which is not true in practice. In this paper, an application of the bivariate gamma exponential distribution is provided to drought data from Nebraska. The exact distributions of R=X+Y, P=XY and W=X/(X+Y) and the corresponding moment properties are derived when X and Y follow this bivariate distribution.

Estimation of Conditional Kendall's Tau for Bivariate Interval Censored Data

  • Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.599-604
    • /
    • 2015
  • Kendall's tau statistic has been applied to test an association of bivariate random variables. However, incomplete bivariate data with a truncation and a censoring results in incomparable or unorderable pairs. With such a partial information, Tsai (1990) suggested a conditional tau statistic and a test procedure for a quasi independence that was extended to more diverse cases such as double truncation and a semi-competing risk data. In this paper, we also employed a conditional tau statistic to estimate an association of bivariate interval censored data. The suggested method shows a better result in simulation studies than Betensky and Finkelstein's multiple imputation method except a case in cases with strong associations. The association of incubation time and infection time from an AIDS cohort study is estimated as a real data example.

A simple zero inflated bivariate negative binomial regression model with different dispersion parameters

  • Kim, Dongseok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.895-900
    • /
    • 2013
  • In this research, we propose a simple bivariate zero inflated negative binomial regression model with different dispersion for bivariate count data with excess zeros. An application to the demand for health services shows that the proposed model is better than existing models in terms of log-likelihood and AIC.

Obtaining bootstrap data for the joint distribution of bivariate survival times

  • Kwon, Se-Hyug
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.933-939
    • /
    • 2009
  • The bivariate data in clinical research fields often has two types of failure times, which are mark variable for the first failure time and the final failure time. This paper showed how to generate bootstrap data to get Bayesian estimation for the joint distribution of bivariate survival times. The observed data was generated by Frank's family and the fake date is simulated with the Gamma prior of survival time. The bootstrap data was obtained by combining the mimic data with the observed data and the simulated fake data from the observed data.

  • PDF

A Class of Bivariate Linear Failure Rate Distributions and Their Mixtures

  • Sarhan, Ammar M.;El-Gohary, A.;El-Bassiouny, A.H.;Balakrishnan, N.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.63-79
    • /
    • 2009
  • A new bivariate linear failure rate distribution is introduced through a shock model. It is proved that the marginal distributions of this new bivariate distribution are linear failure rate distributions. The joint moment generating function of the bivariate distribution is derived. Mixtures of bivariate linear failure rate distributions are also discussed. Application to a real data is given.

  • PDF

Statistical Analysis of Bivariate Current Status Data with Informative Censoring Using Frailty Effects

  • Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2012
  • In animal tumorigenicity data, tumor onsets occur at several sites and onset times cannot be exactly observed. Instead, the existence of tumors is examined only at death time or sacrifice time of the animal. Such an incomplete data structure makes it difficult to investigate the effect of treatment on tumor onset times; in addition, such dependence should be considered when censoring due to death is related with tumor onset. A bivariate frailty effect is incorporated to model bivariate tumor onsets and to connect death with tumor. For the inference of parameters, EM algorithm is applied and a real NTP(National Toxicology Program) dataset is analyzed as an illustrative example.

Independent Testing in Marshall and Olkin's Bivariate Exponential Model Using Fractional Bayes Factor Under Bivariate Type I Censorship

  • Cho, Kil-Ho;Cho, Jang-Sik;Choi, Seung-Bae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1391-1396
    • /
    • 2008
  • In this paper, we consider two components system which the lifetimes have Marshall and Olkin's bivariate exponential model with bivariate type I censored data. We propose a Bayesian independent test procedure for above model using fractional Bayes factor method by O'Hagan based on improper prior distributions. And we compute the fractional Bayes factor and the posterior probabilities for the hypotheses, respectively. Also we select a hypothesis which has the largest posterior probability. Finally a numerical example is given to illustrate our Bayesian testing procedure.

  • PDF

Some properties of reliability, ratio, maximum and minimum in a bivariate exponential distribution with a dependence parameter

  • Lee, Jang Choon;Kang, Jun Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.219-226
    • /
    • 2014
  • In this paper, we derived estimators of reliability P(Y < X) and the distribution of ratio in the bivariate exponential density. We also considered the means and variances of M = max{X,Y} and m = min{X,Y}. We finally presented how E(M), E(m), Var(M) and Var(m) are varied with respect to the ones in the bivariate exponential density.

Failure rate of a bivariate exponential distribution

  • Hong, Yeon-Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.173-177
    • /
    • 2010
  • It is well known that if the parent distribution has a nonnegative support and has increasing failure rate, then all the order statistics have increasing failure rate (IFR). The result is not necessarily true in the case of bivariate distributions with dependent structures. In this paper we consider a symmetric bivariate exponential distribution and show that, two marginal distributions are IFR and the distributions of the minimum and maximum are constant failure rate and IFR, respectively.