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Abstract. A new bivariate linear failure rate distribution is introduced through
a shock model. It is proved that the marginal distributions of this new bivariate
distribution are linear failure rate distributions. The joint moment generating
function of the bivariate distribution is derived. Mixtures of bivariate linear
failure rate distributions are also discussed. Application to a real data is given.
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1. INTRODUCTION

The univariate linear failure rate distribution is widely used in reliability analysis and
electronics; see, for example, Ahmad (2001), Pandey, Singh and Zimmer (1993), Sarhan
(1996), Zacks (1991), Balakrishnan and Basu (1995), and Johnson, Kotz and Balakrishnan
(1994).

Generally, shock models are used in reliability to describe different applications. Shocks
can refer, for example, to damages caused to biological organs by illness or environmental
causes of damage acting on a technical system; see A-Hameed and Proschan (1973).

Several basic multivariate parametric families of distributions such as multivariate expo-
nential, Weibull, gamma, and normal distributions, and shock models that give rise to them
have been discussed by Barlow and Proschan (1981). Earlier, Marshall and Olkin (1967a)
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considered a shock model to derive a bivariate exponential distribution. Generalization of
this bivariate exponential distribution was proposed by Marshall and Olkin (1967b). For a
detailed review of all these developments, one may refer to Kotz, Balakrishnan and Johnson
(2000).

Shock models have been used to estimate the reliability measures for series and parallel
systems with nonindependent and nonidentical components by Grabski and Sarhan (1996),
Sarhan (1996) and El-Gohary and Sarhan (2005). Also, Sarhan and Abouammoh (2001)
used a shock model to derive the reliability function of a nonrepairable k−out−of−n system
with nonindependent and nonidentical components.

The main purpose of this paper is to introduce a new bivariate linear failure rate dis-
tribution (BLFRD). This distribution is derived as a distribution of the lifetimes of two
nonindependent components each having a univariate linear failure rate distribution. Mix-
tures of BLFRD are also studied. This paper is organized as follows. Section 2 presents the
shock model yielding the bivariate linear failure rate distribution. Some important prop-
erties such as the joint survival function, joint moment generating function, expectations,
and marginal and conditional distributions are also discussed in this section. In Section 3,
mixtures of these BLFRD’s are discussed. Finally, in section 4, application to a real data
set is given.

2. THE BLFRD

In this section, we introduce a new form of bivariate linear failure rate distribution.
We start with the bivariate survival function from which the joint probability density func-
tion is derived. We then discuss the moment generating function, expectations, and the
marginal and conditional distributions.

2.1 Shock model yielding the BLFRD

Suppose that there are three independent sources of shocks present in the environment
of a system consisting of two components. A shock from Source 1 could destroy Component 1
and that it could occur at a random time U1; a shock from Source 2 could destroy Component
2 and that it could occur at a random time U2; finally, a shock from Source 3 could destroy
both components and that it could occur at a random time U3. Then, the random lifetime of
Component 1, say X, is given by X = min (U1, U3), while the random lifetime of Component
2, say Y , is given by Y = min (U2, U3).

Let us assume that the random variables U1 and U2 have linear failure rate distributions
with parameters (αi, βi), say LFRD(αi, βi), for i = 1, 2, respectively. Next, let U3 have an
exponential distribution with parameter θ0. That is, the probability density function of Ui

(i = 1, 2) is given by

gi(t) = (αi + βi t) exp
{
−

(
αi t +

βi

2
t2

)}
, t ≥ 0, αi, βi > 0 (2.1)

with the corresponding survival function as

Ḡi(t) = exp
{
−

(
αi t +

βi

2
t2

)}
, t ≥ 0. (2.2)
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The probability density function of U3 is

g3(t) = θ0 exp{−θ0 t}, t ≥ 0, θ0 > 0 (2.3)

with the corresponding survival function

Ḡ3(t) = exp {−θ0 t} , t ≥ 0. (2.4)

It is evident that the lifetimes of the system components, X and Y , are dependent because
of the common source of Shock 3.

We now study the joint distribution of the random variables X and Y , which is called
a bivariate linear failure rate distribution.

Lemma 2.1. The joint survival function of X and Y is

F̄X, Y (x, y) = exp
{
−α1x− α2y − 1

2
β1x

2 − 1
2

β2y
2 − θ0 max(x, y)

}
, x, y > 0. (2.5)

Proof. Since
F̄X, Y (x, y) = P

(
X > x, Y > y

)
,

we have

F̄X, Y (x, y) = P
(

min(U1, U3) > x, min(U2, U3) > y
)

= P
(
U1 > x, U3 > x, U2 > y, U3 > y

)

= P
(
U1 > x, U2 > y, U3 > max(x, y)

)
.

From the fact that U1, U2, U3 are mutually independent with their survival functions as in
(2.2) and (2.4), we get

F̄X, Y (x, y) = P (U1 > x)P (U2 > y)P
(
U3 > max(x, y)

)

= Ḡ1(x) Ḡ2(y) Ḡ3

(
max(x, y)

)
.

Upon substituting from (2.2) and (2.4) into the above equation, we readily obtain the ex-
pression in (2.5).

The following corollary gives the survival functions of the marginal distributions of X
and Y .

Corollary 2.1.The marginal distributions of BLFRD are LFRD with the following marginal
survival functions:

F̄i(t) = exp
{
−(αi + θ0)t− 1

2
βi t2

}
, t ≥ 0, i = 1, 2. (2.6)

The following corollary presents the joint distribution function of (X, Y ).
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Corollary 2.2. The joint distribution function of (X, Y ) is given by

F (x, y) = 1− exp
{
−(α1 + θ0)x− β1

2
x2

}
− exp

{
−(α2 + θ0)y − β2

2
y2

}

+exp
{
−θ0 max(x, y)− α1 x− α2 y − β1

2
x2 − β2

2
y2

}
, x, y > 0.

(2.7)

Proof. The expression in (2.7) readily follows from the relation

F (t1, t2) = 1− F̄1(t1)− F̄2(t2) + F̄ (t1, t2), t1, t2 > 0.

2.2 The joint, marginal and conditional density functions

In this subsection, we derive the joint probability density function of the BLFRD. We
then derive the marginal pdf’s of X and Y as well as the conditional pdf’s of X given Y
and of Y given X.

Theorem 2.1. If the joint survival function of (X, Y ) is as in (2.5), the joint probability
density function of (X, Y ) is given by

f(x, y) =





f1(x, y) if x > y > 0,
f2(x, y) if y > x > 0,
f0(x, y) if x = y > 0

(2.8)

where

f1(x, y) = (α1 + θ0 + β1x)(α2 + β2y)e−α1x−α2y− 1
2 β1x2− 1

2 β2y2−θ0x,

f2(x, y) = (α1 + β1x)(α2 + θ0 + β2y)e−α1x−α2y− 1
2 β1x2− 1

2 β2y2−θ0y,

f0(x, y) = θ0e
−(α1+α2+θ0)x− 1

2 (β1+β2)x
2
.

Proof. The forms of f1(x, y) and f2(x, y) can be readily obtained by differentiating F̄X,Y (x, y)
in (2.5) with respect to x and y. But, f0(x, x) can not be derived in a similar method. For
this reason, we use the following identity to derive f0(x, x):

∫ ∞

0

∫ x

0

f1(x, y)dydx +
∫ ∞

0

∫ y

0

f2(x, y)dxdy +
∫ ∞

0

f0(x, x)dx = 1. (2.9)

One can find by direct integration that
∫ ∞

0

∫ x

0

f1(x, y)dydx = 1−
∫ ∞

0

(θ0 + α1 + β1x)e−(α1+θ0+α2)x− 1
2 (β1+β2) x2

dx (2.10)

and ∫ ∞

0

∫ y

0

f2(x, y)dxdy = 1−
∫ ∞

0

(θ0 + α2 + β2y)e−(α1x+α2+θ0)y− 1
2 (β1+β2)y

2
dy. (2.11)

From (2.10) and (2.11), we get
∫ ∞

0

∫ x

0

f1(x, y)dydx +
∫ ∞

0

∫ y

0

f2(x, y)dxdy = 1−
∫ ∞

0

θ0 e−(α1+β1+θ0)x− 1
2 (α2+β2)x

2
dx.

(2.12)
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Upon using (2.12) in (2.9), we immediately obtain
∫ ∞

0

f0(x, x)dx =
∫ ∞

0

θ0 e−(α1+β1+θ0)x+ 1
2 (α2+β2)x

2
dx

from which we get

f0(x, x) = θ0e
−(α1+β1+θ0)x− 1

2 (α2+β2)x
2
, x > 0, (2.13)

which completes the proof of the theorem.

The following corollary gives the marginal pdf’s of X and Y .

Corollary 2.3. The marginal pdf’s of X and Y are

fX(x) = (α1 + θ0 + β1x)e−(α1+θ0)x− 1
2 β1x2

, x > 0, (2.14)

and

fY (y) = (α2 + θ0 + β2y)e−(α2+θ0)y− 1
2 β2y2

, y > 0. (2.15)

Proof. One can prove this corollary either by differentiating the marginal survival functions
of X and Y given in (2.6) or by integrating the joint pdf of (X, Y ) in (2.8) with respect to
y and x, respectively.

Note that the marginal distributions of X and Y are also linear failure rate distributions.

Corollary 2.4. The conditional pdf’s of X given Y and of Y given X are as follows:

fX|Y (x|y) =





(α1+θ0+β1x)(α2+β2y)
α2+θ0+β2y e−{α1x+θ0(x−y)+ 1

2 β1x2} if x > y > 0 ,

(α1 + β1x) e−(α1x+ 1
2 β1x2) if y > x > 0 ,

θ0
α2+θ0+β2y e−(α1x+ 1

2 β1x2) if x = y > 0,

(2.16)

and

fY |X(y|x) =





(α2 + β2y) e−(α2y+ 1
2 β2y2) if x > y > 0 ,

(α2+θ0+β2y)(α1+β1x)
(α1+θ0+β1x) e−{θ0(y−x)+α2y+ 1

2 β2y2} if y > x > 0 ,
θ0

α1+θ0+β1y e−(α2y+ 1
2 β2y2) if x = y > 0 .

(2.17)

Proof. With

fX|Y (x|y) =
f(x, y)
fY (y)

and fY |X(y|x) =
f(x, y)
fX(x)

,

upon substituting from (2.8), (2.14) and (2.15) in the above expressions and simplifying, we
obtain the expressions of the conditional densities as in (2.16) and (2.17).

2.3 Moment generating functions and expectations

In this subsection, we derive the joint moment generating function of (X, Y ) as well
as the marginal moment generating functions of X and Y . These functions are then used
to obtain the first- and second-order moments.
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Theorem 2.2. The joint moment generating function of (X, Y ) is

MX,Y (t1, t2) = 1 + t1

√
π

2β1
e

(α1+θ0−t1)2

2β1

{
1−Ψ

(
α1 + θ0 − t1√

2β1

)}

+t2

√
π

2β2
e

(α2+θ0−t2)2

2β2

{
1−Ψ

(
α2 + θ0 − t2√

2β2

)}

+t1t2

[√
π

2β1
e

(α1+θ0−t1)2

2β1 I1(t1, t2) +
√

π

2β2
e

(α2+θ0−t2)2

2β2 I2(t1, t2)
]

,

(2.18)

where

I1(t1, t2) =
∫ ∞

0

{
1−Ψ

(
α1 + θ0 − t1 + β1 u√

2β1

)}
e−[(α2−t2)u+ 1

2 β2u2]du , (2.19)

I2(t1, t2) =
∫ ∞

0

{
1−Ψ

(
α2 + θ0 − t2 + β2 u√

2β2

)}
e−[(α1−t1)u+ 1

2 β1u2]du , (2.20)

and Ψ(u) = 2√
π

∫ u

0
e−u2

du.
Proof. With the moment generating function of (X,Y ) being

MX,Y (t1, t2) = E
[
et1X+t2Y

]
,

we can write from (2.8) that

MX,Y (t1, t2) =
∫ ∞

0

∫ x

0

et1x+t2y f1(x, y) dy dx +
∫ ∞

0

∫ y

0

et1x+t2yf2(x, y) dx dy

+
∫ ∞

0

e(t1+t2)x f0(x, x)dx.

Substituting the expressions of f0, f1 and f2, carrying out the integrations, and simplifying
the resulting expression, we obtain (2.18).

The following corollary presents the marginal moment generating functions of X and Y .

Corollary 2.5. The marginal moment generating functions of X and Y are given by

MX(t1) = 1 +
√

π

2β1
t1

{
1−Ψ

(
α1 + θ0 − t1√

2βi

)}
exp

{
(α1 + θ0 − t1)2

2β1

}
(2.21)

and

MY (t2) = 1 +
√

π

2β2
t2

{
1−Ψ

(
α2 + θ0 − t2√

2β2

)}
exp

{
(α2 + θ0 − t2)2

2β2

}
. (2.22)

Corollary 2.6. From (2.18), (2.21) and (2.22), we obtain:

E[X] =
√

π

2β1

{
1−Ψ

(
α1 + θ0√

2β1

)}
exp

{
(α1 + θ0)2

2β1

}
, (2.23)



Ammar M. Sarhan, A. El-Gohary, A. H. El-Bassiouny, N. Balakrishnan 69

E[Y ] =
√

π

2β2

{
1−Ψ

(
α2 + θ0√

2β2

)}
exp

{
(α2 + θ0)2

2β2

}
, (2.24)

E[X2] =
2
β1

+
√

2π (α1 + θ0)
β1

√
β1

{
1−Ψ

(
α1 + θ0√

2β1

)}
exp

{
(α1 + θ0)2

2β1

}
, (2.25)

E[Y 2] =
2
β2

+
√

2π (α2 + θ0)
β2

√
β2

{
1−Ψ

(
α2 + θ0√

2β2

)}
exp

{
(α2 + θ0)2

2β2

}
, (2.26)

E[X Y ] =
√

π

2β1
I1(0, 0) exp

{
(α1 + θ0)2

2β1

}
+

√
π

2β2
I2(0, 0) exp

{
(α2 + θ0)2

2β2

}
.

(2.27)

The expressions in (2.23) – (2.27) can be used to derive the variances of X and Y and
the covariance and correlation coefficient between X and Y .

Note that, by setting β1 = β2 = 0 in the above results, we get the corresponding formulae
for the bivariate exponential distribution. For example, we have the following results.

Corollary 2.7. The moment generating function of the bivariate exponential distribution
is

MX,Y (t1, t2) =
1

(α1 + α2 + θ0 − t1 − t2)

{
α1(α2 + θ0)

(α2 + θ0 − t2)
+

α2(α1 + θ0)
(α1 + θ0 − t1)

+ θ0

}
. (2.28)

From (2.28), we readily get the following:

E(X) =
1

α1 + θ0
, E(Y ) =

1
α2 + θ0

,

and

E(XY ) =
α1 + 2α2 + 2θ0

(α2 + θ0)(α1 + α2 + θ0)2
+

(α1 + α2)(α1 + θ0) + 2α2(α1 + α2 + θ0)
(α2 + θ0)2(α1 + α2 + θ0)2

. (2.29)

3. MIXTURES OF BLFRD

In this section, we first discuss the mixture of independent linear failure rate distri-
butions. We then derive a mixture of bivariate linear failure rate distributions where the
dependence among the components is characterized by a latent random variable indepen-
dently distributed of the individual components.

Consider a system of two components where the lifetime of Component i (i = 1, 2), say
Xi, is a mixture of two independent linear failure rate distributions as follows:

X1 ∼ a1 LFRD(α11, β11) + (1− a1) LFRD(α12, β12) , 0 ≤ a1 ≤ 1 ,

and
X2 ∼ a2 LFRD(α21, β21) + (1− a2) LFRD(α22, β22) , 0 ≤ a2 ≤ 1 .
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Here, the notation LFRD(αij , βij) means a random variable, say Xij , having a linear failure
rate distribution with parameters (αij , βij) and density function

fXij
(x) = (αij + βijx)e−(αijx+ 1

2 βijx2), x > 0, αij > 0, βij > 0 ∀ i, j .

Consider also an exponentially distributed random variable, say Z, with parameter θ0 which
is independent of Xij for all i, j. This random variable Z will be used as a latent variable in
order to introduce dependence among X ′s. The density function of Z is

fZ(z) = θ0e
−θ0z, z > 0, θ0 > 0 .

Because of the independence assumption made above, we see that Z is also independent of
X1 and X2.

Define Si = Min(Xi, Z) for i = 1, 2. Then, the vector (S1, S2) has a bivariate distribution
with S1 and S2 being obviously dependent as they commonly share the influence of the latent
random variable Z.

Now, we derive the joint survival function of (S1, S2) from which we also derive the joint
density function of (S1, S2).

Corollary 3.1.The joint survival function of (S1, S2) is given by

F̄ (s1, s2) = p11 e−{α11s1+α21s2+
1
2 (β11s2

1+β21s2
2)+θ0s0}

+p12 e−{α11s1+α22s2)+
1
2 (β11s2

1+β22s2
2)+θ0s0}

+p21 e−{α12s1+α21s2+
1
2 (β12s2

1+β21s2
2)+θ0s0}

+p22 e−{α12s1+α22s2+
1
2 (β12s2

1+β22s2
2)+θ0s0}, s1, s2 > 0, (3.1)

where s0 = max(s1, s2) > 0, and for i, j ∈ {1, 2}
pij = a2−i

1 a2−j
2 (1− a1)i−1 (1− a2)j−1 .

Proof. From
F̄ (s1, s2) = P (S1 > s1, S2 > s2),

upon using the definitions of S1 and S2, we readily find

F̄ (s1, s2) = P (X1 > s1)P (X2 > s2)P (Z > s0)

= e−θ0s0

2∏

i=1

[
ai e−(αi1si+

1
2 βi1s2

i ) + (1− ai) e−(αi2si+
1
2 βi2s2

i )
]

which can be rewritten as in (3.1).

Note that:

1. For i, j ∈ {1, 2}, pij ≥ 0 and p11 + p12 + p21 + p22 = 1.

2. Each function on the right hand side of (3.1) is a survival function of a bivariate linear
failure rate distribution of the form given in (2.5).

This implies that the joint survival function given in (3.1) is indeed a joint survival function
of a mixture of four bivariate linear failure rate distributions.
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The following theorem gives the joint pdf of S1 and S2.

Theorem 3.1. The joint pdf of (S1, S2) is given by

f(s1, s2) =





f1(s1, s2) if s1 > s2 ,
f2(s1, s2) if s2 > s1 ,
f0(s1, s1) if s1 = s2 ,

(3.2)

where

f1(s1, s2) = p11(θ0 + α11 + β11s1)(α21 + β21s2)e−{(α11+θ0)s1+α21s2+
1
2 (β11s2

1+β21s2
2)}

+p12(θ0 + α11 + β11s1)(α22 + β22s2)e−{(α11+θ0)s1+α22s2+
1
2 (β11s2

1+β22s2
2)}

+p21(θ0 + α12 + β12s1)(α21 + β21s2)e−{(α12+θ0)s1+α21s2+
1
2 (β12s2

1+β21s2
2)}

+p22(θ0 + α12 + β12s1)(α22 + β22s2)e−{(α12+θ0)s1+α22s2+
1
2 (β12s2

1+β22s2
2)},

(3.3)

f2(s1, s2) = p11(α11 + β11s1)(θ0 + α21 + β21s2)e−{α11s1+(θ0+α21)s2+
1
2 (β11s2

1+β21s2
2)}

+p12(α11 + β11s1)(θ0 + α22 + β22s2)e−{α11s1+(θ0+α22)s2+
1
2 (β11s2

1+β22s2
2)}

+p21(α12 + β12s1)(θ0 + α21 + β21s2)e−{α12s1+(θ0+α21)s2+
1
2 (β12s2

1+β21s2
2)}

+p22(α12 + β12s1)(θ0 + α22 + β22s2)e−{α12s1+(θ0+α22s2)+
1
2 (β12s2

1+β22s2
2)},

(3.4)

and

f0(s0, s0) = p11θ0e
−{(α11+θ0+α21)s0+

1
2 (β11+β21)s

2
0}

+p12e
−{(α11+θ0+α22)s0+

1
2 (β11+β22)s

2
0}

+p21e
−{(α12+θ0+α21)s0+

1
2 (β12+β21)s

2
0}

+p22e
−{(α12+θ0+α22)s0+

1
2 (β12+β22)s

2
0}.

(3.5)

Corollary 3.2. The marginal pdf’s of S1 and S2 are given by

fS1(s1) = a1(α11 + θ0 + β11s1)e−{(α11+θ0)s1+
1
2 β11s2

1}

+(1− a1)(α12 + θ0 + β12s1)e−{(α12+θ0)s1+
1
2 β12s2

1} , s1 > 0 ,
(3.6)

and

fS2(s2) = a2(α21 + θ0 + β21s2)e−{(α21+θ0)s2+
1
2 β21s2

2}

+(1− a2)(α22 + θ0 + β22s2)e−{(α22+θ0)s2+
1
2 β22s2

2} , s2 > 0 .
(3.7)

3.1 Moment generating functions and expectations

In this subsection, we derive the joint moment generating function of (S1, S2) and the
marginal moment generating functions of S1 and S2, using which we derive the first- and
second-order moments of S1 and S2.

Theorem 3.2. The joint moment generating function of (S1, S2) is given by

MS1,S2(t1, t2) = 1 +
√

π t1

[
a1√
2β11

{
1−Ψ

(
α11 + θ0 − t1√

2β11

)}
exp

{
(α11 + θ0 − t1)2

2β11

}
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+
(1− a1)√

2β12

{
1−Ψ

(
α12 + θ0 − t1√

2β12

)}
exp

{
(α12 + θ0 − t1)2

2β12

}]

+
√

π t2

[
a2√
2β21

{
1−Ψ

(
α21 + θ0 − t2√

2β21

)}
exp

{
(α21 + θ0 − t2)2

2β21

}

+
(1− a2)√

2β22

{
1−Ψ

(
α22 + θ0 − t2√

2β22

)}
exp

{
(α22 + θ0 − t22

2β22

}]

+t1t2
√

π

[
1√

2 β11

{
p11 I

(11)
1 (t1, t2) + p12 I

(12)
1 (t1, t2)

}

× exp
{

(α11 + θ0 − t1)2

2β11

}

+
1√

2 β12

{
p21 I

(21)
1 (t1, t2) + p22 I

(22)
1 (t1, t2)

}
exp

{
(α12 + θ0 − t1)2

2β12

}

+
1√

2 β21

{
p11 I

(11)
2 (t1, t2) + p21 I

(12)
2 (t1, t2)

}
exp

{
(α21 + θ0 − t2)2

2β21

}

+
1√

2 β22

{
p12 I

(12)
2 (t1, t2) + p22 I

(22)
2 (t1, t2)

}
exp

{
(α22 + θ0 − t2)2

2β22

}]
,

(3.8)

where (I(11)
1 , I

(11)
2 ), (I(12)

1 , I
(12)
2 ), (I(21)

1 , I
(21)
2 ) and (I(22)

1 , I
(22)
2 ) can be obtained from (2.19)

(2.10), respectively, by replacing (α1, α2, β1, β2) with (α11, α12, β11, β12), (α11, α22, β11, β22),
(α12, α21, β12, β21) and (α12, α22, β12, β22).
Proof. From

MS1,S2(t1, t2) = E
(
et1 S1+t2 S2

)
=

∫ ∞

0

∫ ∞

0

et1s1+t2s2 f(s1, s2)ds1ds2 ,

we can express from (3.2)

MS1,S2(t1, t2) =
∫ ∞

0

e(t1+t2)s0f0(s0, s0)ds0

+
∫ ∞

0

∫ s1

0

e(t1s1+t2s2)f1(s1, s2)ds2ds1

+
∫ ∞

0

∫ s2

0

e(t1s1+t2s2)f2(s1, s2)ds1ds2.

Now, upon substituting from (3.3) – (3.5), carrying out the integrations, and simplifying
the resulting expression, we obtain (3.8).

Corollary 3.3. The marginal moment generating functions of S1 and S2 are given by

MS1(t1) = 1 + a1 t1

√
π

2β11

{
1−Ψ

(
α11 + θ0 − t1√

2β11

)}
exp

{
(α11 + θ0 − t1)2

2β11

}

+(1− a1) t1

√
π

2β12

{
1−Ψ

(
α12 + θ0 − t1√

2β12

)}
exp

{
(α12 + θ0 − t1)2

2β12

}

(3.9)
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and

MS2(t2) = 1 + a2 t2

√
π

2β21

{
1−Ψ

(
α21 + θ0 − t2√

2β21

)}
exp

{
(α21 + θ0 − t2)2

2β21

}

+(1− a2) t2

√
π

2β22

{
1−Ψ

(
α22 + θ0 − t2√

2β22

)}
exp

{
(α22 + θ0 − t2)2

2β22

}
.

(3.10)

Corollary 3.4. From (3.8) – (3.10), we obtain:

E[S1] = a1

√
π

2β11

{
1−Ψ

(
α11 + θ0√

2β11

)}
exp

{
(α11 + θ0)2

2β11

}

+(1− a1)
√

π

2β12

{
1−Ψ

(
α12 + θ0√

2β12

)}
exp

{
(α12 + θ0)2

2β12

}
, (3.11)

E[S2] = a2

√
π

2β21

{
1−Ψ

(
α21 + θ0√

2β21

)}
exp

{
(α21 + θ0)2

2β21

}

+(1− a2)
√

π

2β22

{
1−Ψ

(
α22 + θ0√

2β22

)}
exp

{
(α22 + θ0)2

2β22

}
, (3.12)

E[S2
1 ] = a1

[
2

β11
+
√

2π (α11 + θ0)
β11

√
β11

{
1−Ψ

(
α11 + θ0√

2β11

)}
exp

{
(α11 + θ0)2

2β11

}]

+(1− a1)

[
2

β12
+
√

2π (α12 + θ0)
β12

√
β12

{
1−Ψ

(
α12 + θ0√

2β12

)}
exp

{
(α12 + θ0)2

2β12

}]
,

(3.13)

E[S2
2 ] = a2

[
2

β21
+
√

2π (α21 + θ0)
β21

√
β21

{
1−Ψ

(
α21 + θ0√

2β21

)}
exp

{
(α21 + θ0)2

2β21

}]

+(1− a2)

[
2

β22
+
√

2π (α22 + θ0)
β22

√
β22

{
1−Ψ

(
α22 + θ0√

2β22

)}
exp

{
(α22 + θ0)2

2β22

}]
,

(3.14)

E[S1S2] =
√

π

2 β11

{
p11I

(11)
1 (0, 0) + p12I

(12)
1 (0, 0)

}
exp

{
(α11 + θ0)2

2β11

}

+
√

π

2 β12

{
p21I

(21)
1 (0, 0) + p22I

(22)
1 (0, 0)

}
exp

{
(α12 + θ0)2

2β12

}

+
√

π

2 β21

{
p11I

(11)
2 (0, 0) + p21I

(21)
2 (0, 0)

}
exp

{
(α21 + θ0)2

2β21

}

+
√

π

2 β22

{
p12I

(12)
2 (0, 0) + p22I

(22)
2 (0, 0)

}
exp

{
(α22 + θ0)2

2β22

}
. (3.15)

From the expressions in (3.11) – (3.15), we can derive the variances of S1 and S2 as well
as the covariance and correlation coefficient between S1 and S2.
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Finally, we note that the mixture of bivariate exponential distributions and its properties
can all be derived from the mixture of bivariate linear failure rate distributions presented
above by setting all β’s as zero.

4. APPLICATION TO A REAL DATA

In this section we illustrate how the proposed bivariate distribution fits a real data
from a Diabetic retinopathy study. The 197 patients in this data set were a 50% random
sample of the patients with high risk diabetic retinopathy as defined as Diabetic Retinopathy
Study (DRS), see Rojo and Ghebremichael (2006). Diabetic retinopathy is a complication
associated with diabetic mellitus consisting of abnormalities in the microvasculature within
the retina of the eye. In patients under 60 years of age in the United States, it is the
leading cause of new cause of blindness. It is the major cause of visual loss elsewhere in
many industrialized countries. The DES begun in 1971 to study the effectiveness of laser
photocoagulation in delaying the onset of blindness in patients with diabetic retinopathy.
Patients with diabetic retinopathy in both eyes and visual acuity of 20/100 or better were
eligible for the study. One eye of each patient was randomly selected for the treatment and
the other eye was observed without treatment. For each eye, the event for interest was the
time from initiation of the treatment to the time when visual acuity dropped below 5/200
two visits in a row (call it ”blindness”). Thus there is a built-in lag time of approximately 6
months (visits were every 3 months). Survival times in this data set are therefore the actual
time to blindness in months, minus the minimum possible time to event (6.5 months).
Diabetes are classified into two general groups by the age at the onset: juvenile (< 20 years)
and adult diabetes. In the DRS study censoring was caused by death, dropout, or the end
of the study. In the data sets used here, there is no censoring. For each uncensored case i,
the survival times of the treated (Xi) and untreated (Yi) eyes are given in Tables 4.1 and
4.2.

Table 4.1. Survival times (months) for adults
Patient, i 1 2 3 4 5 6 7
Xi 38.57 1.33 21.90 13.87 48.30 9.90 8.30
Yi 30.83 5.77 25.63 25.80 5.73 9.90 8.30
Patient, i 8 9 10 11 12 13 14
Xi 12.20 33.63 27.60 1.63 1.57 4.97 9.87
Yi 4.10 33.63 63.33 38.47 13.83 12.93 24.43

Table 4.2. Survival times (months) for juvenile
Patient, i 1 2 3 4 5 6 7 8
Xi 6.90 1.63 13.83 35.53 14.8 6.20 22.0 1.7
Yi 20.17 10.27 5.67 5.90 33.9 1.73 30.2 1.7
Patient, i 9 10 11 12 13 14 15 16
Xi 43.03 6.53 42.17 48.43 9.60 7.60 1.80 9.90
Yi 1.77 18.70 42.17 14.30 13.33 14.27 34.57 21.57
Patient, i 17 18 19 20 21 22 23 24
Xi 13.77 0.83 1.97 11.3 30.40 19.0 5.43 46.63
Yi 13.77 10.33 11.07 2.1 13.97 13.8 13.57 42.43
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Let ˆ̄F (x, y) be the empirical bivariate survival function. Also, let F̄BLFRD(x, y) and
F̄BED(x, y) be the bivariate survival functions of the bivariate linear failure rate distribution
and bivariate exponential distribution, respectively.
For each data set we do the following:

1. Compute and plot the empirical bivariate survival function ˆ̄F . Tables 4 and 5 give ˆ̄F
computed by using data sets 1 and 2, respectively. Figures 1.a and 1.b show ˆ̄F for
the data sets 1 and 2, respectively.

2. Estimate, using the maximum likelihood approach, the parameters included in the
bivariate exponential distribution (BED) and bivariate linear failure rate distribution
(BLFRD). Table 4.3 gives estimations of the parameters.

3. Based on the estimations of the parameters, we compute the survival functions of
both distributions. We denote by Tables 4.4 and 4.5 give the values of these functions
at each observation of sets 1 and 2, respectively.

4. Compute the absolute difference, called absolute error, between ˆ̄F and both F̄BLFRD

and F̄BED at each observation, according to the following relations

d
(i)
BLFRD =

∣∣∣ ˆ̄F (xi, yi)− F̄BLFRD(xi, yi)
∣∣∣ , d

(i)
BED =

∣∣∣ ˆ̄F (xi, yi)− F̄BED(xi, yi)
∣∣∣

Tables 4.4 and 4.5 gives the values of d
(i)
BLFRD, d

(i)
BED for the sets 1 and 2, respectively.

5. Compute the average of the absolute errors associated with each distribution.

6. Plot the functions F̄BLFRD(x, y) and F̄BED(x, y) when the unknown parameters in-
cluded are replaced by their estimates given in Table 4.3. Figures (a) and (b) of Figure
4.2 show F̄BLFRD(x, y) for the data sets 1 and 2, respectively. Figures (a) and (b) of
Figure 4.3 show F̄BED(x, y) for the data sets 1 and 2, respectively. Figures

The mean of the absolute errors associated with both BLFRD and BED are computed
and given respectively by 0.052, 0.055, using set 1 and 0.043, 0.045, using set 2.

From the results obtained and Figures 4.1, 4.2 and 4.3, it seems that the BLFRD fits
both two data sets better than the BED.

Table 4.3. The parameter estimations.
set BLFRD BED

α1 α2 β1 β2 θ0 α1 α2 θ0

1 0.042 0.014 1.036
104

7.51
104 0.019 0.042 9.927

103 0.028

2 0.048 0.029 5.43
105

1.453
103 0.014 0.045 0.023 0.022
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Table 4.4. The values of ˆ̄F , F̄BLFRD, F̄BED, dBLFRD and dBED for the data in Table 4.1.

i ˆ̄F F̄BLFRD F̄BED d
(i)
BLFRD d

(i)
BED

1 0.000 0.04000 0.050 0.04000 0.050000
2 0.786 0.77200 0.760 0.01300 0.026000
3 0.214 0.13100 0.151 0.08300 0.063000
4 0.214 0.18500 0.210 0.03000 0.004137
5 0.000 0.04200 0.032 0.04200 0.032000
6 0.357 0.45800 0.454 0.10100 0.096000
7 0.500 0.52200 0.515 0.02200 0.015000
8 0.429 0.44300 0.409 0.01400 0.019000
9 0.000 0.05000 0.068 0.05000 0.068000

10 0.000 0.00836 0.028 0.00836 0.028000
11 0.071 0.15100 0.217 0.07900 0.146000
12 0.500 0.55200 0.554 0.05200 0.054000
13 0.429 0.49800 0.497 0.06900 0.069000
14 0.357 0.23500 0.262 0.12200 0.095000

Table 4.5. The values of ˆ̄F , F̄BLFRD, F̄BED, dBLFRD and dBED for the data in Table 4.2.

i ˆ̄F F̄BLFRD F̄BED d
(i)
BLFRD d

(i)
BED

1 0.208 0.223000 0.298 0.015000 0.090000
2 0.667 0.550000 0.588 0.116000 0.079000
3 0.333 0.349000 0.349 0.015000 0.016000
4 0.125 0.087000 0.082 0.038000 0.043000
5 0.083 0.049000 0.113 0.034000 0.030000
6 0.708 0.645000 0.636 0.064000 0.073000
7 0.083 0.048000 0.096 0.036000 0.013000
8 0.875 0.854000 0.859 0.021000 0.016000
9 0.083 0.062000 0.055 0.021000 0.029000

10 0.250 0.253000 0.324 0.002573 0.074000
11 0.042 0.005532 0.023 0.036000 0.019000
12 0.000 0.026000 0.029 0.026000 0.029000
13 0.375 0.310000 0.358 0.065000 0.017000
14 0.250 0.323000 0.376 0.073000 0.126000
15 0.083 0.087000 0.198 0.003565 0.114000
16 0.167 0.174000 0.245 0.007415 0.078000
17 0.292 0.246000 0.291 0.046000 0.000794
18 0.667 0.570000 0.608 0.097000 0.059000
19 0.583 0.516000 0.559 0.067000 0.025000
20 0.417 0.463000 0.449 0.046000 0.032000
21 0.125 0.085000 0.096 0.040000 0.029000
22 0.208 0.177000 0.205 0.032000 0.003190
23 0.500 0.375000 0.428 0.125000 0.072000
24 0.000 0.004053 0.017 0.004053 0.017000
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a) Data set 1 b) Data set 2
Figure 4.1. The empirical bivariate survival function.

a) Data set 1 b) Data set 2
Figure 4.2. The bivariate survival function of BLFRD.

a) Data set 1 b) Data set 2
Figure 4.3. The bivariate survival function of BED.
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