• Title/Summary/Keyword: bismuth sodium titanate

Search Result 16, Processing Time 0.025 seconds

Optimum Compositions for Piezoelectric Properties of Pb-free (Bi0.5Na0.5)(1-x)BaxTiO3 Ceramics (비납계 (Bi0.5Na0.5)(1-x)BaxTiO3 압전 세라믹 재료의 최적 조성)

  • Sung, Yeon-Soo;Yeo, Hong-Goo;Cho, Jong-Ho;Song, Tae-Kwon;Jeong, Soon-Jong;Song, Jae-Sung;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.68-72
    • /
    • 2007
  • Optimum compositions for piezoelectric properties of $(Bi_{0.5}Na_{0.5})_{(1-x)}Ba_xTiO_3$ ceramics were investigated in the range of $x=0{\sim}0.1$ covering rhombohedral to tetragonal phase regions. No impurity phases other than a perovskite phase were found and the grain size decreased with increasing x. A two-phase coexisting morphotropic phase area rather than boundary dividing rhombohedral and tetragonal phase regions appeared to exist at $x=0.05{\sim}0.08$. As for piezoelectric properties within morphotropic phase compositions, the piezoelectric constant ($d_{33}$) and the electromechanical coupling factor ($K_p$) showed peak values at x=0.065, 192 pC/N and 34%, respectively, indicating x=0.065 as an optimum composition for piezoelectric $(Bi_{0.5}Na_{0.5})_{(1-x)}Ba_xTiO_3$ ceramics.

Processing, structure, and properties of lead-free piezoelectric NBT-BT

  • Mhin, Sungwook;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.160-165
    • /
    • 2015
  • Lead-free piezoelectric materials have been actively studied to substitute for conventional PZT based solid solution, $Pb(Zr_xTi_{1-x}O_3)$, which occurs unavoidable PbO during the sintering process. Among them, Bismuth Sodium Titanate, $Na_{0.5}Bi_{0.5}TiO_3$ (abbreviated as NBT) based solid solution is attracted for the one of excellent candidates which shows the strong ferroelectricity, Curie temperature (Tc), remnant polarization (Pr) and coercive field (Ec). Especially, the solid solution of rhombohedral phase NBT with tetragonal perovskite phase has a rhombohedral - tetragonal morphotropic phase boundary. Modified NBT with tetragonal perovskite at the region of MPB can be applied for high frequency ultrasonic application because of not only its low permittivity, high electrocoupling factor and high mechanical strength, but also effective piezoelectric activity by poling. In this study, solid state ceramic processing of NBT and modified NBT, $(Na_{0.5}Bi_{0.5})_{0.93}Ba_{0.7}TiO_3$ (abbreviated as NBT-7BT), at the region of MPB using 7 % $BaTiO_3$ as a tetragonal perovskite was introduced and the structure between NBT and NBT-7BT were analyzed using rietveld refinement. Also, the ferroelectric and piezoelectric properties of NBT-7BT such as permittivity, piezoelectric constant, polarization hysteresis and strain hysteresis loop were compared with those of pure NBT.

Effects of La2O3 on the Piezoelectric Properties of Lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 Piezoelectric Ceramics (무연 BNBT 세라믹스의 압전특성에 미치는 La2O3의 영향)

  • Son Young-Jin;Yoon Man-Soon;Ur Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.756-759
    • /
    • 2005
  • A lead free piezoelectric material, bismuth sodium barium titanate $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ (BNBT), was considered as an environment-friendly alternatives for the current PZT system. A perovskite BNBT was synthesized by conventional bulk ceramic processing technique. In order to improve piezoelectric properties, $La_2O_3$ as a dopant was incorporated into the BNBT system up to 0.025 moi, ana the effects on subsequent the piezoelectric ana dielectric properties were systematically investigated. With increasing $La_2O_3$ contents, the equilibrium grain shape was remarkably evidenced and sintered density was increased. Piezoelectric and dielectric properties were s]town to have maximum values at the $La_2O_3$ contents of 0.02 mol. $La^{3+}$ ions seemed to act as a softener in the BNBT system and to enhance dielectric and piezoelectric properties in this study.

Dielectric and Piezoelectric Properties Of Lead-free (Bi0.5Na0.5)TiO3-BaTiO3 Ferroelectric Ceramics (비납계 (Bi0.5Na0.5)TiO3-BaTiO3 강유전 세라믹 재료의 유전 및 압전 특성)

  • Kuk Min-Ho;Kim Myong-Ho;Cho Jung-A;Sung Yeon-Soo;Song Tae Kwon;Bae Dong-Sik;Jeong Soon-Jong;Song Jae-Sung
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.683-689
    • /
    • 2005
  • The structural, piezoelectric and ferroelectric properties of $(1-x)(Bi_{0.5}Na_{0.5})TiO_3$ x=0.00, 0.02, 0.04, 0.06, 0.08, and 0.10) ceramics were investigated. A gradual change in the crystal and microstructures with tile increase of $BaTiO_3$ (BT) concentration was observed. The $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) samples show unusual properties as ferroelectric relaxer materials. We observed a phase transition in BNT solid solutions with BT having normal ferroelectric phase transition. At room temperature, BNT presents a single phase without the morphotropic phase boundary (MPB). In the case of samples doped with $4\~8 mol\%$ BT, rhombohedral-tetragonal MPB was formed and the piezoelectric properties were improved.

Nb-doping Effects on Ferroelectric and Piezoelectric Properties of Pb-free Bi0.5Na0.5 (비납계 Bi0.5Na0.5의 강유전 및 압전 특성에 미치는 Nb-doping 효과)

  • Yeo, Hong-Goo;Sung, Yeon-Soo;Song, Tae-Kwon;Cho, Jong-Ho;Jeong, Soon-Jong;Song, Jae-Sung;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.705-709
    • /
    • 2006
  • Nb was doped to Pb-free $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) by a solid state mixing process to form $(Bi_{0.5}Na_{0.5})Ti_{1-x}Nb_xO_3\;(x=0{\sim}0.05)$ (BNTNb) and its doping effects on ferroelectric and piezoelctric properties of BNT were investigated. The BNTNb solid solutions were formed up to x=0.01 with no apparent second phases while grain sizes decreased. As x increased, coercive field ($E_c$) and mechanical quality factor ($Q_m$) decreased but piezoelectric constant ($d_{33}$) increased, which indicates Nb acts as a donor for BNT.

Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites (무연 완화형/정규 강유전체 복합소재 [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3의 저전계 전계유기 변형 특성 연구)

  • Hong, Chang-Hyo;Kang, Jin-Kyu;Jo, Wook;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.342-347
    • /
    • 2016
  • We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.