• 제목/요약/키워드: bipolar process

검색결과 231건 처리시간 0.025초

EHA 유압펌프 부품의 플라즈마 질화기술 적용에 관한 연구 (A study for Application of ion Nitriding on EHA Hydraulic Pump Parts)

  • 김은영;김범석;이상율
    • 한국표면공학회지
    • /
    • 제38권6호
    • /
    • pp.234-240
    • /
    • 2005
  • In this study, ion nitriding of a EHA pump part made of AISI 4340 steel was performed under different applied power conditions to study the relationship between dimensional changes of specimens and the type of applied power source. Microstructures and micohardness distribution at different processing conditions were also examined. Duplex surface treatment of ion nitriding with the optimum process conditions to produce the minimum dimensional variation in a EHA pump part and a TiN thin film coating by unbalanced magnetron sputtering was performed and the specimens with a duplex surface treatment were subjected to a high speed wear test to evaluate the wear performance of EHA hydraulic pump parts with various surface treatment conditions. Results indicated that uniform and continuous surface layer with a minimum dimensional variation could be obtained by ion nitriding with bipolar mode power source and much enhanced wear characteristics with a duplex surface treatment could be obtained, compared with results from ion nitriding or single-layerd TiN coating specimens.

뉴런 활성화 경사 최적화를 이용한 개선된 플라즈마 모델 (An improved plasma model by optimizing neuron activation gradient)

  • 김병환;박성진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.20-20
    • /
    • 2000
  • Back-propagation neural network (BPNN) is the most prevalently used paradigm in modeling semiconductor manufacturing processes, which as a neuron activation function typically employs a bipolar or unipolar sigmoid function in either hidden and output layers. In this study, applicability of another linear function as a neuron activation function is investigated. The linear function was operated in combination with other sigmoid functions. Comparison revealed that a particular combination, the bipolar sigmoid function in hidden layer and the linear function in output layer, is found to be the best combination that yields the highest prediction accuracy. For BPNN with this combination, predictive performance once again optimized by incrementally adjusting the gradients respective to each function. A total of 121 combinations of gradients were examined and out of them one optimal set was determined. Predictive performance of the corresponding model were compared to non-optimized, revealing that optimized models are more accurate over non-optimized counterparts by an improvement of more than 30%. This demonstrates that the proposed gradient-optimized teaming for BPNN with a linear function in output layer is an effective means to construct plasma models. The plasma modeled is a hemispherical inductively coupled plasma, which was characterized by a 24 full factorial design. To validate models, another eight experiments were conducted. process variables that were varied in the design include source polver, pressure, position of chuck holder and chroline flow rate. Plasma attributes measured using Langmuir probe are electron density, electron temperature, and plasma potential.

  • PDF

Graphene Oxide Thin Films for Nonvolatile Memory Applications

  • Kim, Jong-Yun;Jeong, Hu-Young;Choi, Hong-Kyw;Yoon, Tae-Hyun;Choi, Sung-Yool
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.9-9
    • /
    • 2011
  • There has been strong demand for novel nonvolatile memory technology for low-cost, large-area, and low-power flexible electronics applications. Resistive memories based on metal oxide thin films have been extensively studied for application as next-generation nonvolatile memory devices. However, although the metal oxide-based resistive memories have several advantages, such as good scalability, low-power consumption, and fast switching speed, their application to large-area flexible substrates has been limited due to their material characteristics and necessity of a high-temperature fabrication process. As a promising nonvolatile memory technology for large-area flexible applications, we present a graphene oxide-based memory that can be easily fabricated using a room temperature spin-casting method on flexible substrates and has reliable memory performance in terms of retention and endurance. The microscopic origin of the bipolar resistive switching behaviour was elucidated and is attributed to rupture and formation of conducting filaments at the top amorphous interface layer formed between the graphene oxide film and the top Al metal electrode, via high-resolution transmission electron microscopy and in situ x-ray photoemission spectroscopy. This work provides an important step for developing understanding of the fundamental physics of bipolar resistive switching in graphene oxide films, for the application to future flexible electronics.

  • PDF

A 2 GHz 20 dBm IIP3 Low-Power CMOS LNA with Modified DS Linearization Technique

  • Rastegar, Habib;Lim, Jae-Hwan;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.443-450
    • /
    • 2016
  • The linearization technique for low noise amplifier (LNA) has been implemented in standard $0.18-{\mu}m$ BiCMOS process. The MOS-BJT derivative superposition (MBDS) technique exploits a parallel LC tank in the emitter of bipolar transistor to reduce the second-order non-linear coefficient ($g_{m2}$) which limits the enhancement of linearity performance. Two feedback capacitances are used in parallel with the base-collector and gate-drain capacitances to adjust the phase of third-order non-linear coefficients of bipolar and MOS transistors to improve the linearity characteristics. The MBDS technique is also employed cascode configuration to further reduce the second-order nonlinear coefficient. The proposed LNA exhibits gain of 9.3 dB and noise figure (NF) of 2.3 dB at 2 GHz. The excellent IIP3 of 20 dBm and low-power power consumption of 5.14 mW at the power supply of 1 V are achieved. The input return loss ($S_{11}$) and output return loss ($S_{22}$) are kept below - 10 dB and -15 dB, respectively. The reverse isolation ($S_{12}$) is better than -50 dB.

바이폴라 델타 구동 GMSK에 대한 복조 (The Demodulation for Bipolar Delta Driven GMSK)

  • 방승철
    • 한국통신학회논문지
    • /
    • 제38B권10호
    • /
    • pp.824-831
    • /
    • 2013
  • 델타 구동 GMSK는 바이폴라 델타 신호로 가우시안 펄스를 생성하고 $+T_b/2$$-T_b/2$ 사이의 차분 신호로 위상변조하는 방식이다. 이러한 방식에 대한 복조는 기존의 GMSK와는 다르게 설계해야 한다. 본 논문에서는 인접한 비트 간의 위상 변화를 검출하고 위상 영역을 경판정한 다음에 상태 전이로 이진 데이터를 복원하는 방식을 설계하였다. AWGN 채널에 대한 전산모의실험 결과, 이진 데이터의 런 랭스에 의한 비트 오율의 영향이 확인되었으며, 이론적인 코히어런트 복조의 BER과 비교해서 $BT_b$=0.3에 대하여 2[dB] 정도의 성능 저하가 있는 것으로 분석되었다.

공정조건에 따른 함몰된 다결정실리콘/실리콘($n^{+}$) - 실리콘(p) 접합의 특성 (Properties of Recessed Polysilicon/Silicon($n^{+}$) - Silicon(P) Junction with Process Condition)

  • 이종호;최우성;박춘배;이종덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 춘계학술대회 논문집
    • /
    • pp.152-153
    • /
    • 1994
  • A recessed $n^{+}$-p junction diode with the serf-aligned structure is proposed and fabricated by using the polysilicon as an $n^{+}$ diffusion source. The diode structure can be applicable to the emitter-base formation of high performance bipolar device and the $n^{+}$ polysilicon emitter has an important effect on the device characteristics. The considered parameters for the polysilicon formation are the deposition condition $As^{+}$ dose for the doping of the polysilicon, and the annealing using RTP system. The vertical depth profiles of the fabricated diode are obtained by SIMS. The eleotrical characteristics are analyzed in trims of the ideality factor of diode (n), contact resistance arid reverse leakage current. The $As_{+}$ dose for the formation of good junction is current. The $As^{+}$ dose for the formation of goodjunctions is about 1∼2${\times}$$10^{16}$$cm^{-2}$ at given RTA condition ($1100^{\circ}C$, 10 sec). The $n^{+}$-p structure is successfully applied to the self-aligned bipolar device adopting a single polysilicon technology.

  • PDF

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

M-shaped 파형을 이용한 작은 액적의 잉크젯 프린팅 (Inkjet Printing of Small Droplets Using M-shaped Waveforms)

  • 홍송은;최지호;김기은;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.51-56
    • /
    • 2021
  • Using an inkjet printing process, we have investigated a droplet formation of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) near the orifice of a piezoelectric inkjet head. With an attempt to form the smallest droplet without any satellites, we have applied various waveforms such as the unipolar, bipolar, and M-shaped waveforms. It is found that the droplet velocity and volume vary depending sensitively on the waveform width and voltage. Of those, the M-shaped waveform is shown to provide the smallest droplet volume, followed by the bipolar and then unipolar waveforms. The droplet printed on a PET film roll by the M-shaped waveform has the diameter as small as 46.1 ㎛. It is likely that the second short unipolar in the M-shape waveform increases the droplet velocity gradient, rendering the droplet smaller.

4H-SiC 기판 위에 RF Sputter로 증착된 NiO 박막의 후열처리 효과 (Post-annealing Effect of NiO Thin Film Grown by RF Sputtering System on 4H-SiC Substrate)

  • 문수영;김민영;변동욱;이건희;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.170-174
    • /
    • 2023
  • Nickel oxide is a nonstoichiometric transparent conductive oxide with p-type conductivity, a wide-band energy gap of 3.4~4.0 eV, and excellent chemical stability, making it a very important candidate as a material for bipolar devices. P-type conductivity in Transparent Conductive Oxides (TCO) is controlled by the oxygen vacancy concentration. During the TCO film deposition process, additional oxygen diffusing into the NiO structure causes the formation of Ni 3p ions and Ni vacancies. This eventually affects the hole concentration of the p-type oxide thin film. In this work, the surface morphology and the electrical characteristics were confirmed in accordance with the annealing atmosphere of the nickel oxide thin film.

AZ31B 마그네슘 판재의 원형 및 사각형 동시변형 공정에서 블랭크 홀딩력이 두께변화에 미치는 영향 (The Effect of Blank Holding Force on Thickness Variation in Simultaneous Sheet forming process with Circle and Rectangle Shape of AZ31B Magnesium Sheet)

  • 권기태;강석봉;김현호;강충길
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.531-537
    • /
    • 2009
  • The effect of blank holding force on thickness variation in simultaneous sheet forming with rectangular shape and circular has been demonstrated. Because has investigated an effect on formability of magnesium sheet, in this paper, the effect of punch radius on formability have been thinning, various crack phenomena and forming velocity. By simultaneously forming process with circular and rectangular shape, the data of simultaneously forming process with circular and rectangular shape will used to a part development such as notebook computer case, cell phone and bipolar plate of fuel cell.