• Title/Summary/Keyword: bipolar plates

Search Result 111, Processing Time 0.021 seconds

Lightweight Metallic Bipolar Plates of PEMFC for a Small Reconnaissance UAV (소형 정찰 UAV를 위한 고분자 전해질막 연료전지의 경량의 금속 분리판)

  • Kim, Ki-In;Lee, Jong-Kwang;Jang, Bo-Sun;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1031-1037
    • /
    • 2010
  • This paper proposed lightweight aluminum bipolar plates as an alternative for conventional graphite bipolar plates in fuel cell systems used as a power source for small reconnaissance UAVs. Since bipolar plates occupy more than 80% of the total weight of the fuel cell system, lightweight aluminum bipolar plates can improve the overall payload and flight time of the fuel cell UAV. The aluminum and graphite bipolar plates were fabricated to compare the performance of each of them. A 15% higher performance per weight was obtained from aluminum bipolar plates than the graphite bipolar plates. Also, the performance of a single cell using aluminum bipolar plates was evaluated under various operating conditions.

Surface Morphology and Electrical Property of PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 표면형상과 전기적 특성)

  • Song, Yon-Ho;Yun, Young-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The metal nitride film formed on the stainless steel bipolar plates represented a microstructural morphology of fine columnar grains with 10 nm diameter and 60nm length in FE-SEM images. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

Optimal Design of Bipolar-Plates for a PEM Fuel Cell (고분자 전해질 연료전지용 분리판 최적 설계)

  • Han, In-Su;Jeong, Jee-Hoon;Lim, Jong-Koo;Lim, Chan;Jung, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

Development of Metaal Bipolar plates for Fuel Cell Vehicles (연료전지 차량용 금속분리판 개발)

  • Jin, Sang-Mun;Yang, Yoo-Chang;Kim, Sae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.331-334
    • /
    • 2009
  • Currently, the bipolar plates are fabricated mainly from graphite materials. However, metal bipolar plate are getting most attractive due to their good feasibility of mass production and low cost. In this study, metal bipolar plates for fuel cell Vehicles were developed with a concept based on the straight flow patterns to minimize the pressure drop and spring back. And molded gasket apply to the bipolar plate for improve sealing performance. Results show that the metal bipolar plate have a high potential to replace for graphite materials in fuel cell application.

  • PDF

Multi-film coated bipolar plates for PEMFC (Proton Exchange Membrane Fuel Cell) application (다층박막 코팅된 PEMFC (Proton Exchange Membrane Fuel Cell)용 바이폴라 플레이트)

  • Jeon, Gwang-Yeon;Yun, Young-Hoon;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.646-648
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

  • PDF

A Study on the Performance of PEMFC Using the TiN-Coated 316 Stainless Steel Bipolar Plates (TiN이 코팅된 316 스테인리스강 분리판을 이용한 고분자전해질 연료전지의 성능에 관한 연구)

  • Cho, Eun-Ae
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • As an alternative bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC), TiN-coated 316 stainless was evaluated in terms of electrical contact resistance and water contact angle. Performance and lifetime of the TiN-coated 316 bipolar plates were measured in comparison with those of graphite and bare 316 bipolar plates. At a cell voltage of 0.6 V, current density of the single cells using graphite, AISI 316, and TiN/316 bipolar plates was 996, 796, and $896mA/cm^2$, respectively. By coating 316 stainless steel with TiN layer, performance degradation rate determined to be the voltage degradation rate at a cell voltage of 0.6 V was reduced from 2.3 to 0.43 mV/h.

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

Studies on the Width of Rectangular Channels of Fuel Cell Bipolar Plate Using FDM 3D Printer with PLA Filament

  • Kim, Jae-Hyun;Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.683-691
    • /
    • 2021
  • Bipolar plates with channel width of 0.5 mm, 0.4 mm, and 0.3 mm respectively were printed using a 3D printer. The shape of three b ipolar plates was rectangular, the channel depth was 0.5 mm, and the thickness of base was 0.5 mm. The bipolar plate with channel width of 0.5 mm had 45 channels, and their active area was 44.5 mm × 50 mm. The bipolar plate with channel width of 0.4 mm had 57 channels and its active area was 45.2 mm × 50 mm, and the bipolar plate with channel width of 0.3 mm had 75 channels and its active area was 44.7 mm × 50 mm. The bipolar plates were printed using PLA filament. The cross-sectional lengths of the bipolar plates with channel widths of 0.5 mm and 0.4 mm were identical by 96% of the designed cross-sectional length. Whereas the bipolar plate with a channel length of 0.3 mm had a large difference of 25% from the designed cross-sectional length.

Forming of Metallic Bipolar Plates by Dynamic Loading (Dynamic Load를 이용한 박막 금속 분리판 성형기술)

  • Koo, J.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2012
  • The weight of the bipolar plate is one of the crucial aspects of improving power density in PEMFC stacks. Aluminum alloys have good mechanical properties such as density, electrical resistivity, and thermal conductivity. Furthermore, using aluminum in a bipolar plate instead of graphite reduces the bipolar plate cost and makes machining easier. Therefore in this study, an aluminum alloy was selected as the appropriate material for a bipolar plate. Results from feasibility experiments with the aim of developing fuel cells consisting of Al bipolar plates with multiple channels are presented. Dynamic loading was applied and the formability of micro channels was estimated as a function of punch pressure and die radius. Sheets of Al5052 with a thickness of 0.3mm were used. For a die radius of 0.1mm the formability was optimized with a sine wave dynamic load of 90kN at maximum pressure and 5 cycles of a sine wave punch travel. The experimental results demonstrate the feasibility of the proposed manufacturing technique for producing bipolar plates.

Commercializing Technology Development of Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell (고분자연료전지용 분리판 상용화 기술개발)

  • Kim, Jeong-Heon
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.409-414
    • /
    • 2011
  • To promote the industry of PEMFC, the commercialization of its parts especially bipolar plate is needed. The bipolar plate is one of key parts for PEMFC, which occupies cost portion of 5~8% in the system. To replace the bipolar plate of machined graphite highly costly, the stamped thin matal or the molded carbon composite has been developed. According to the merits and demerits of each material and its forming process, the stamped metallic plate has been considered to the bipolar plate of PEMFC for automotive, and on the other hand, the molded composite plate has been considered to one for building applications. Hankook Tire Co., Ltd. has developed the carbon composite material and the manufacturing process for the bipolar plates. The developed bipolar plates were proved to be fully applicable to PEMFC of building applications in characteristics and performance, and so government strategic project to develop the mass-production technology for bipolar plates was started and is being conducted by the company. Through the government project for obtaining both the commercialization technology and production capacity for the bipolar plates, the price and the performance of domestic PEMFCs are expected to become competitive in international market.