• Title/Summary/Keyword: biotic stress

Search Result 120, Processing Time 0.026 seconds

Investigation of Root Morphological and Architectural Traits in Adzuki Bean (Vigna angularis) Cultivars Using Imagery Data

  • Tripathi, Pooja;Kim, Yoonha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • Roots play important roles in water and nutrient uptake and in response to various environmental stresses. Investigating diversification of cultivars through root phenotyping is important for crop improvement in adzuki beans. Therefore, we analyzed the morphological and architectural root traits of 22 adzuki bean cultivars using 2-dimensional (2D) root imaging. Plants were grown in plastic tubes [6 cm (diameter) × 40 cm (height)] in a greenhouse from July 25th to August 28th. When the plants reached the 2nd or 3rd trifoliate leaf stage, the roots were removed and washed with tap water to remove soil particles. Clean root samples were scanned, and the scanned images were analyzed using the WinRHIZO Pro software. The cultivars were analyzed based on six root phenotypes [total root length (TRL), surface area (SA), average diameter (AD), and number of tips (NT) were included as root morphological traits (RMT); and link average length (LAL) and link average diameter (LAD) were included as root architectural traits (RAT)]. According to the analysis of variance (ANOVA), a significant difference was observed between the cultivars for all root morphological traits. Distribution analysis demonstrated that all root traits except LAL followed a normally distributed curve. In the correlation test, the most important morphological trait, TRL, showed a strong positive correlation with SA (r = 0.97***) and NT (r = 0.94***). In comparison, between RMT and RAT, TRL showed a significantly negative correlation with LAL (r = -0.50***); however, TRL did not show a correlation with LAD. Based on RMT and RAT, we identified the cultivars that ranked 5% from the top and bottom. In particular, the cultivar "IT 236657" showed the highest TRL, SA, and NT, while the cultivar "IT 236169" showed the lowest values for TRL, SA, and NT. In addition, the coefficient of variance for the six tested root traits ranged from (14.26-40%) which suggested statistical variability in root phenotypes among the 22 adzuki bean varieties. Thus, this study will help to select target root traits for the adzuki bean breeding program in the future, generating climate-resilient adzuki beans, especially for drought stress, and may be useful for developing biotic and abiotic stress-tolerant cultivars based on better root trait attributes.

Enhancing Production of Terpenoids in Metabolically Engineered Transgenic Spearmint (Mentha spicata L.) by Salt and Fungal Elicitors

  • Choi, Myung Suk;Park, Dong Jin;Song, Hyun Jin;Min, Ji Yun;Kang, Seung Mi;Lee, Chong Kyu;Cho, Kye Man;Karigar, Chandrakant;Kim, Ho Kyoung;Kang, Young Min
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2014
  • Forest tree species usually takes for long periods to be harvested and cultivated but spearmints are a good model system for woody plant because of reducing and shortening cultivation time. Spearmints are good model plants (Mentha species) for research about terpenoids production and industrial essential oil manufacture. Isopentenyl pyrophosphate isomerase (Iso) and limonene synthase (Limo) are the key enzymes of terpenoid biosynthesis pathway. Transgenic and wild spearmints (Mentha spicata, MS) were cultured in vitro and assessed for the essential oil contents. The content of essential oil of transgenic spearmint also was enhanced slightly depending on the target terpenoid genes. In an attempt to increase productivity of terpenoids further, salt and fungal elicitation strategy was adopted on transgenic Mentha spicata. The salt (800 mM NaCl) as abiotic and two fungi (Botrytis cinerea and Glomerella cingulata) as biotic were used for elicitors. In the absence of salt stress four terpenoids were detected from the spearmint extracts, all of them being monoterpenes. On the other hand, the transgenic (MSIso) extracts contained eleven terpenoids (10 monoterpenes and 1 phenylpropene) while transgenic (MSLimo) extracts contained seven monoterpenes. After 3 days of fungal infection, the resistance indices further increased to 4.38, 3.89 and 2.04 for wild type, MSIso and MSLimo, respectively. The salt and fungal elicitators proved beneficial towards modifying both the terpenoids profile and improvement in the composition of essential oil. These results have important applications for the large-scale production of essential oils and forest biotechnology with respect to spearmint.

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

Biocontrol Activities of Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3 and Pseudomonas sp. BC42 on Anthracnose, Bacterial Fruit Blotch and Fusarium Wilt of Cucumber Plants (Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3와 Pseudomonas sp. BC42에 의한 오이 탄저병, 박과류 과실썩음병과 오이 덩굴쪼김병의 생물방제 효과검정)

  • Jiwon Kim;Mee Kyung Sang
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.188-192
    • /
    • 2023
  • Abiotic and biotic stresses have been a serious threat to crop growth and productivity in the agricultural system. In this study, four strains (HS1, H30-3, KJ40, and BC42), which have biological activities related to disease suppression or alleviation of salinity and drought stresses, were tested for broad-spectrum biocontrol activity against anthracnose caused by Colletotrichum orbiculare, a bacterial fruit blotch caused by Acidovorax citrulli, and Fusarium wilt caused by Fusarium oxysporum in cucumber plants. As a result of test, when the four strains were drenched into the soil, anthracnose in cucumber leaves significantly decrease; strain KJ40 suppressed disease incidence by A. citrulli; strain BC42 significantly reduced bacterial fruit blotch and Fusarium wilt compared to control. Therefore, strain KJ40 could be a biocontrol candidate for controlling anthracnose through induced systemic resistance and the disease caused by A. citrulli as well as alleviating drought stress; strain BC42 has broad-spectrum biocontrol activity against anthracnose, Fusarium wilt, and bacterial fruit blotch.

Characterization of SID2 that is required for the production of salicylic acid by using β-GLUCURONIDASE and LUCIFERASE reporter system in Arabidoposis (리포트 시스템을 이용한 살리실산 생합성 유전자 SID2의 발현 해석)

  • Hong, Mi-Ju;Cheong, Mi-Sun;Lee, Ji-Young;Kim, Hun;Jeong, Jae-Cheol;Shen, Mingzhe;Ali, Zahir;Park, Bo-Kyung;Choi, Won-Kyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Salicylic acid(SA) is a phytohormone that is related to plant defense mechanism. The SA accumulation is triggered by abiotic and biotic stresses. SA acts as a signal molecular compound mediating systemic acquired resistance and hypersensitive response in plant. Although the role of SA has been studied extensively, an understanding of the SA regulatory mechanism is still lacking in plants. In order to comprehend SA regulatory mechanism, we have been transformed with a SID2 promoter:GUS::LUC fusion construct into siz1-2 mutant and wild plant(Col-0). SIZ1 encodes SUMO E3 ligase and negatively regulates SA accumulation in plants. SID2(SALICYLIC ACID INDUCTION DEFICIENT2) is a crucial enzyme of SA biosynthesis. The Arabidopsis SID2 gene encodes isochorismate synthase(ICS) that controls SA level by conversion of chorismate to isochorismate. We compared the regulation of SID2 in wild-type and siz1-2 transgenic plants that express SID2 promoter:GUS::LUC constructs respectively. The expressions of $\beta$-GLUCURONIDASE and LUCIFERASE were higher in siz 1-2 transgenic plant without any stress treatment. SID2 promoter:GUS::LUC/siz1-2 transgenic plant will be used as a starting material for isolation of siz1-2 suppressor mutants and genes involved in SA-mediated stress signaling pathway.

A New Short Growth-Duration Rice Cultivar, "Keumo 3" (소득작물 전후작용 단기성 벼 품종 "금오3호")

  • Kang, Jong-Rae;Lee, Jong-Hee;Kwack, Do-Yeon;Lee, Jeom-Sik;Park, No-Bong;Ha, Woon-Gu;Park, Dong-Soo;Yeo, Un-Sang;Lim, Sang-Jong;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.292-298
    • /
    • 2009
  • A new rice cultivar "Keumo 3" was developed for adopting under double cropping system with after or before cash crop cultivation. It was selected from the cross-combination between YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102. The parent, YR17202 $F_2$ individual plant, was used for tolerance to lodging, it derived from a cross between Nonganbyeo/Shinkeumobyeo. Nonganbyeo is well known to lodging tolerance cultivar, as well as biotic stress, because it was developed by crossing with Tongil type. And the YR15727-B-B-B-102 line used as another parent with short growth duration, likewise highly resistance to rice blast disease. The pedigree derived from the cross-combination YR17202 $F_2$/Shinkeumobyeo//YR15727-B-B-B-102 were generated to $F_7$, and a best line among them named as Milyang 201. After a series of yield trials, including local adaptability test conducted throughout the peninsular of Korea, Milyang 201 was registered with the name of "Keumo 3" in 2005. The cultivar belongs to a early maturing group and heads 4 days earlier than Keumobyeo, a standard cultivar. It has short culm, and less spikelet number per panicle than Keumobyeo. However, its milled rice yield grown under extremely late transplanting time, 10. July, over the 3 local sites for 2003-2005 years, averaged 4,48 MT/ha, which is 6% higher than the standard, Keumobyeo. "Keumo 3" has showed a durable resistance to leaf blast disease during fourteen blast nurseries screening covered from south to north in Korea for 2003-2007 years. And it was confirmed harbours pi-zt, a durable blast resistance gene. Moreover it was incompatible with 19 blast isolates under artificial inoculation, except one isolate, K1101. Additionally, "Keumo 3" exhibits resistance to $K_1$, $K_2$ and $K_3$ of bacterial blight pathogen, as well as strip virus disease resistance, and moderate resistance to dwarf virus disease. Consequently, the new rice cultivar "Keumo 3" would be well adopted where a bio stress makes a big problem annually.

Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight (전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼)

  • Park, Sang Ryeol;Kim, Hye Seon;Lee, Kyong Sil;Hwang, Duk-Ju;Bae, Shin-Chul;Ahn, Il-Pyung;Lee, Seo Hyun;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58-overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.

Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang' (고랭지 여름배추 주산지의 기온을 기준으로 한 수준별 온도가 배추 '춘광'의 생육 및 생리반응에 미치는 영향)

  • Son, In-Chang;Moon, Kyung Hwan;Song, Eun Young;Oh, Soonja;Seo, Hyeongho;Moon, Young Eel;Yang, Jinyoung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.254-260
    • /
    • 2015
  • Changes of the growth, quality and physiological response of Chinese cabbage cv 'Chunkwang' in response to five different temperature treatments based on climate change scenario were investigated during the growing season. The treatments consisted of normal year temperature $-2.0^{\circ}C$ (I), normal year temperature (II; Control group), normal year temperature $+2.0^{\circ}C$ (III), normal year temperature $+4.0^{\circ}C$ (IV), and normal year temperature $+6.0^{\circ}C$ (V). Regarding fresh weight, number of leaves, and leaf area were high in group IV, and V before the head formation stage, but it has decreased during the later growth period. Rate of frangibleness sympton was the highest in group V as 85.7%, and it was decreased in group IV (64.3%), group III (28.6%), group II (14.3%), and group I (7.1%). Regarding photosynthetic rate, group III, IV, and V showed relatively high photosynthetic rate at 20 DAP but it was reduced dramatically during the later growth period. Transpiration and stomatal conductance showed the similar trend with the photosynthetic rate. When comparing the chlorophyll fluorescence reaction of each treatment group at 50 DAP, Fv/Fm in group I was highest as 8.04 among all treatment groups and the lowest in group IV as 7.15.