Chalcones exhibit multiple biological activities. Various studies have attempted to modify the structure of chalcones with a special focus on the addition of substituents to the benzene rings. However, these chemical modifications did not improve the water solubility and bioavailability of chalcones. Glycosylation can markedly affect the physical and chemical properties of hydrophobic compounds. Here, we evaluated the ability of a highly promiscuous glycosyltransferase (GT) BsGT1 from Bacillus subtilis ATCC 6633 to biosynthesize chalcone glucosides. Purified BsGT1 catalyzed the conversion of 4'-hydroxychalcone (compound 1), 4'-hydroxy-4-methylchalcone (compound 2), and 4-hydroxy-4'-methoxychalcone (compound 3), into chalcone 4'-O-β-D-glucoside (compound 1a), 4-methylchalcone 4'-O-β-D-glucoside (compound 2a), and 4'-methoxychalcone 4-O-β-D-glucoside (compound 3a), respectively. To avoid the addition of expensive uridine diphosphate glucose (UDP-Glc), a whole-cell biotransformation system was employed to provide a natural intracellular environment for in situ co-factor regeneration. The yields of compounds 1a, 2a, and 3a were as high as 90.38%, 100% and 74.79%, respectively. The successful co-expression of BsGT1 with phosphoglucomutase (PGM) and UDP-Glc pyrophosphorylase (GalU), which are involved in the biosynthetic pathway of UDP-Glc, further improved the conversion rates of chalcones (the yields of compounds 1a and 3a increased by approximately 10%). In conclusion, we demonstrated an effective whole-cell biocatalytic system for the enzymatic biosynthesis of chalcone β-D-glucoside derivatives.
Background: Ginseng (Panax ginseng Mayer) is an important natural medicine. However, a long culture period and challenging quality control requirements limit its further use. Although artificial cultivation can yield a sustainable medicinal supply, research on the association between the transplantation and chaining of metabolic networks, especially the regulation of ginsenoside biosynthetic pathways, is limited. Methods: Herein, we performed Liquid chromatography tandem mass spectrometry based metabolomic measurements to evaluate ginsenoside accumulation and categorise differentially abundant metabolites (DAMs). Transcriptome measurements using an Illumina Platform were then conducted to probe the landscape of genetic alterations in ginseng at various ages in transplantation mode. Using pathway data and crosstalk DAMs obtained by MapMan, we constructed a metabolic profile of transplantation Ginseng. Results: Accumulation of active ingredients was not obvious during the first 4 years (in the field), but following transplantation, the ginsenoside content increased significantly from 6-8 years (in the wild). Glycerolipid metabolism and Glycerophospholipid metabolism were the most significant metabolic pathways, as Lipids and lipid-like molecule affected the yield of ginsenosides. Starch and sucrose were the most active metabolic pathways during transplantation Ginseng growth. Conclusion: This study expands our understanding of metabolic network features and the accumulation of specific compounds during different growth stages of this perennial herbaceous plant when growing in transplantation mode. The findings provide a basis for selecting the optimal transplanting time.
Gang Deok Han;HanGyeol Lee;Jae-Hyeok Park;Young Jae Yun;Gee Woo Kim;Sangyun Jeong;So-Yeon Moon;Hye-Young Seo;Young-Cheon, Kim;Woo Duck Seo;Jeong Hwan Lee
Journal of Plant Biotechnology
/
v.50
/
pp.70-75
/
2023
In legumes, soyasaponins, one of triterpenoid saponins, are major components of secondary metabolites with a more diverse array of bioactive chemicals. Although the biosynthetic pathway of soyasaponins has been largely studied in soybean, the study on the soyasaponin contents and biosynthesis-related gene expression in pea (Pisum sativum L.) is poorly understood. Here, we found the accumulation of only soyasaponin Bb component in the sprouts of two Korean domestic pea cultivars (Dachung and Sachul). This pattern was consistent with our observation that increased expression of PsUGT73P2 and PsUGT91H4 genes, but not PsCYP72A69, could be responsible for biosynthesis of only soyasaponin Bb in pea by examining their gene expression. However, gradual accumulation of soyasaponin Bb at developmental stages was not consistent with the expression of PsUGT73P2 and PsUGT91H4, suggesting that the changes of their protein activities may affect the accumulation patterns of soyasaponin Bb. We also revealed that the increased expression levels of PsUGT73P2 and PsUGT91H4 during light to dark transition led to increase of soyasaponin Bb contents. Collectively, our results provided a molecular basis of metabolic engineering for enhancing useful soyasaponin Bb metabolites in Korean domestic pea cultivars.
Kim, Jai-Hyun;Paik, Young-Ki;Kim, Jong-Bum;Kim, Jong-Guk;Hwang, Young-Soo;Ha, Sun-Hwa
Applied Biological Chemistry
/
v.41
no.1
/
pp.47-52
/
1998
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonic acid, the first intermediate of isoprenoid biosynthetic pathway in plants. The enzyme was solubilized with 0.4% Brij (polyoxyethylene ether) W-1 from a microsomal fraction of etiolated rice seedlings (Oryza sativa L.) in which its maximal activity was observed on the fourth day after germination. HMGR was purified to near homogeneity by employing $(NH_4)_2SO_4$ fractionation plus chromatographic procedures including DEAE-Sephadex A-50 and HMG-CoA-hexane-agarose affinity column. The size of the purified enzyme was estimated to be 55 kDa when judged by SDS-PAGE analysis with silver staining method. The apparent $K_m$ and $V_{max}$ values for HMG-CoA were determined to be $180\;{\mu}M$ and 107 pmol/min/mg, and those for NADPH were $810\;{\mu}M$ and 32.1 pmol/min/mg, respectively.
The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR; EC1.1.1.34) catalyzes the first committed step of isoprenoids biosynthesis in MVA pathway. Here we report for the first time the cloning and characterization of a full-length cDNA encoding HMGR (designated as CgHMGR, GenBank accession number EF206343) from hazel (Corylus avellana L. Gasaway), a taxol-producing plant species. The full-length cDNA of CgHMGR was 2064 bp containing a 1704-bp ORF encoding 567 amino acids. Bioinformatic analyses revealed that the deduced CgHMGR had extensive homology with other plant HMGRs and contained two transmembrane domains and a catalytic domain. The predicted 3-D model of CgHMGR had a typical spatial structure of HMGRs. Southern blot analysis indicated that CgHMGR belonged to a small gene family. Expression analysis revealed that CgHMGR expressed high in roots, and low in leaves and stems, and the expression of CgHMGR could be up-regulated by methyl jasmonate (MeJA). The functional color assay in Escherichia coli showed that CgHMGR could accelerate the biosynthesis of $\beta$-carotene, indicating that CgHMGR encoded a functional protein. The cloning, characterization and functional analysis of CgHMGR gene will enable us to further understand the role of CgHMGR involved in taxol biosynthetic pathway in C. avellana at molecular level.
The efficient fermentative production of L-threonine fermentation was achieved by using Escherichia coli MT201, transformed a plasmid carrying pyruvate carboxylase gene. It is an attempt to supply oxaloacetate to the L-threonine biosynthetic pathway. In order to improve the L-threonine productivity of E. coli MT201, a plasmid pPYC which is an expression vector of the pyruvate carboxylase gene of Coryne-bacterium glutamicum, was introduced. When E. coli MT/pPYC was incubated with medium containing only glucose as a carbon source, both the cell growth and L-threonine production were reduced, compared to the results from fermentation of E. coli MT201. In order to circumvent this effect, we attempted the addition of a mixed carbon source, composed of glucose and sodium citrate at a ratio of 1.5:3.5. It was shown that L-threonine production and cell growth (OD660) with E. coli MT/pPYC reached up to 75.7 g/l and 48, respectively, at incubation for 75 hr under fed-batch fermentation conditions. It is assumed that overproduction of L-threonine by anaplerotic pathway leads unbalance of TCA cycle and sodium citrate might playa role to recover normal TCA cycle.
Flavanone 3$\beta$-hydroxylase (FHT) is an enzyme acting in the central part of the flavonoid biosynthesis pathway. FHT catalyses the hydroxylation of flavanone to dihydroflavonols in the anthocyanin pathway. In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme FHT in Gypsophila paniculata L. A heterologous cDHA probe from Dianthus cavophyllus was used to isolate FHT-encoding cDHA clones from Gypsophila paniculata L.. Inspection of the 1471 bp long sequence revealed an open reading frame 1047 bp, including a 190 bp 5' leader region and 288 bp 3' untranslated region. Comparison of the coding region of this FHT cDHA sequence including the sequences of Arabidopsis thaliana, Citrus sinensis, Dianthus caryophyllus, Ipomoea batatas, Matthiola incana, Nierembergia sp, Petunia hybrida, Solanum tuberosum, Vitis vinifera reveals a identity higher than 69% at the nucleotide level. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRHA from wild type and mutant plants, by in vitro expression yielding and enzymatically active hydroxylase, as indicated by the small dihydrokaempferol peak. Genomic southern blot analysis showed the presence of only one gene for FHT in Gypsophila paniculata.
YeEun Hong;GwangYeel Seo;Byunghyun Kim;Kyuseok Kim;Haejeong Nam;YoonBum Kim
The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
/
v.36
no.4
/
pp.30-50
/
2023
Objectives : To investigate the active compounds and therapeutic mechanisms of Atractylodes Lancea(Thunb.) D.C. and Magnolia Officinalis Rehder et Wilson in the treatment of dermatitis accompanied by pruritus, as well as their potential to complement or replace standard drugs. Methods : We conducted the network pharmacological analysis. We selected effective ingredients among the active compounds of research target herbs. Then we explore pathway/terms of the common target proteins among research target herbs, fexofenadine and disease. Results : We selected 9 active compounds are selected from Atractylodes lancea and identified 231 target proteins. Among them, 74 proteins are associated with inflammatory skin diseases that cause pruritus. These proteins are involved in various pathways including, 'Nitric-oxide synthase regulator activity', 'Hydroperoxy icosatetraenoate dehydratase activity, Aromatase activity', 'RNA-directed DNA polymerase activity', 'Arachidonic acid metabolism', 'Peptide hormone processing', 'Chemokine binding' and 'Sterol biosynthetic process'. Additionally, coregenes are involved in 'IL-17 signaling pathway'. Similarly, we selected 2 active compounds from Magnolia officinalis and identified 133 target proteins. Among them, 33 proteins are related to inflammatory skin diseases that cause pruritus. These proteins are primarily involved in 'Vascular associated smooth muscle cell proliferation' and 'Arachidonic acid metabolism'. There is no significant difference between the pathways in which coregenes are involved. Conclusions : It is expected that Atractylodes Lancea will be able to show direct or indirect anti-pruritus and anti-inflammatory effects on skin inflammation accompanied pruritus through suppressing inflammation and protecting skin barrier. Meanwhile, it is expected that Magnolia Officinalis will only be able to show indirect anti-inflammation effects. Therefore, Atractylodes Lancea and fexofenadine are believed to complement each other, whereas Magnolia Officialinalis is expected to provide supplementary support on skin disease.
A new full-length cDNA encoding hyoscyamine $6\beta$-hydroxylase (designated as aah6h, GenBank Accession No. EF187826), which catalyzes the last committed step in the scopolamine biosynthetic pathway, was isolated from young roots of Anisodus acutangulus by rapid amplification of cDNA ends (RACE) for the first time. The full-length cDNA of aah6h was 1380 bp and contained a 1035 bp open reading frame (ORF) encoding a deduced protein of 344 amino acid residues. The deduced protein had an isoelectric point (pI) of 5.09 and a calculated molecular mass of about 38.7 kDa. Sequence analyses showed that AaH6H had high homology with other H6Hs isolated from some scopolamine-producing plants such as Hyoscyamus niger, Datura metel and Atropa belladonna etc. Bioinformatics analyses results indicated AaH6H belongs to 2-oxoglutarate-dependent dioxygenase superfamily. Phylogenetic tree analysis showed that AaH6H had closest relationship with H6H from A. tanguticus. Southern hybridization analysis of the genomic DNA revealed that aah6h belonged to a multi-copy gene family. Tissue expression pattern analysis firstly founded that aah6h expressed in all the tested tissues including roots, stems and leaves and indicated that aah6h was a constitutive-expression gene, which was the first reported tissue-independent h6h gene compared to other known h6h genes.
Two-stage fed-batch culture was peformed to improve the volumetric productivity of erythritol. In the growth phase dissolved oxygen was maintained to 20% and the feed medium was automatically supplied to the fermenter by pH-stat mode. The cell yield was 0.76 g-cell/g-glucose. In two-stage fed-batch culture, 41% of total erythritol conversion yield with 187 g/L of erythritol concentration and 2.79 g/L-h of maximum erythritol Productivity were obtained when 400 g/L of glucose was directly added in the form of non-sterile powder at production phase. The erythritol productivity increased in parallel with cell mass. The metabolic shift in the biosynthetic pathway of erythritol was caused by dissolved oxygen concentration. The production of gluconic acid was observed when the dissolved oxygen in the medium was maintained over 40% during the production phase, whereas the dissolved oxygen concentration lower than 40% caused the production of citric acid. But the butyric acid was produced independently with dissolved oxygen concentration in the medium. The production of organic acids such as gluconic acid, citric acid, and butyric acid was decreased by addition of mineral salts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.