• Title/Summary/Keyword: bioprocesses

Search Result 21, Processing Time 0.028 seconds

Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production (혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산)

  • LEE, CHAE-YOUNG;YOO, KYU-SEON;HAN, SUN-KEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

Design of Smart Polymer Constructs for Use in Microfluidic Diagnostic Assays

  • Hoffman Allan S.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.42-43
    • /
    • 2006
  • We have prepared random, block and graft copolymers with single or dual sensitivities to various stimuli. We have conjugated these polymers to proteins at random lysine sites or at specific sites designed into the protein by genetic engineering. We are also grafting the smart polymers to the surfaces of nanobeads. We are applying these smart conjugates and smart nanobeads in microfluidic devices for various applications, including diagnostics, affinity separations and enzyme bioprocesses. In this talk I will update our work with these interesting hybrid systems.

  • PDF

Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures

  • Chattopadhyay, Saurabh;Farkya, Sunita;Srivastava, Ashok K.;Bisaria, Virendra
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.138-149
    • /
    • 2002
  • Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stage etc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.

Extractive Recovery of Products from Fermentation Broths

  • Kim, Joong-Kyun;Eugene L. Iannotti;Rakesh Bajpai
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Considerations of partition coefficients, selectivity, biocompatibility, and waste generation are important in selection of appropriate solvents to be used for extractive recovery of products from fermentation broths. Several selection criteria can be used based upon the nature of different species present in the broth. These criteria, along with examples of specific case studies, were presented. These serve not only in screening of useful solvents, but also in pointing to the specific modes of operation of recovery-coupled bioprocesses.

  • PDF

Marine Biotechnology: from Molecules to Aquaculture and Biomedicine

  • Chen, Thomas T.;Chun, Chang Zoon;Chiou, Peter;Chen, Maria J.
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Marine biotechnology encompasses biotechnology in areas such as marine microbiology, biomedical important marine natural products, organisms in extreme environments, and aquaculture. Marine biotechnology, today, poised to flourish more than ever from the confluences that are occurring in fundamental research in modern biology and other areas of science. Using research results from our laboratory and those from others, we will review the current advances of marine biotechnology in this lecture.

  • PDF

Microbial Resources in Marine Environments

  • Lee Jung-Hyun;Bae Seung-Sup;Ryu Ji-Sun;Kim Sang-Jin
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.13-15
    • /
    • 2003
  • Studies on marine microbial diversity using direct analysis of rRNA sequences have revealed previously unrecognized microbes and novel phylogenetic lineages that represent major components of global microbial assemblages. This diversity in the marine biosphere offers opportunities for research and application in the field of biotechnology; global gas exchange, nutrient and element cycling, biomass md food production, marine bioproducts, and bioprocesses. Especially, deep-sea encompasses the extremes of virtually at] environmental parameters found on Earth and provides extreme microorganisms. In this study several extreme microorganisms were successfully isolated from the deep-sea sediment samples obtained by joining ocean cruises for last 2 years and some of them will be introduced.

  • PDF

Modeling methods used in bioenergy production processes: A review

  • Akroum, Hamza;Akroum-Amrouche, Dahbia;Aibeche, Abderrezak
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.323-347
    • /
    • 2020
  • The enhancements of bioenergy production effectiveness require the comprehensively experimental study of several parameters affecting these bioprocesses. The interpretation of the obtained experimental results and the estimation of optimum yield are extremely complicated such as misinterpreting the results of an experiment. The use of mathematical modeling and statistical experimental designs can consistently supply the predictions of the potential yield and the identification of defining parameters and also the understanding of key relationships between factors and responses. This paper summarizes several mathematical models used to achieve an adequate overall and maximal production yield and rate, to screen, to optimize, to identify, to describe and to provide useful information for the effect of several factors on bioenergy production processes. The usefulness, the validity and, the feasibility of each strategy for studying and optimizing the bioenergy-producing processes were discussed and confirmed by the good correlation between predicted and measured values.

Biodecolorization and Biodegradation of Dye by Fungi: A Review (곰팡이를 이용한 염료의 탈색 및 생분해)

  • Cho, Kyung-Suk;Ryu, Hee Wook
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.203-222
    • /
    • 2015
  • In recent years, there has been an intensive research on the application of degradative activities of fungi for treatment of various non-degradable materials such as petroleum hydrocarbons, polychlorinated biphenyls, pesticides, polycyclic aromatic hydrocarbons, dyes and so on. Chief of all, the fungal treatment technology is received the spotlight as one of the most promising alternatives to replace present methods for the treatment of dye wastewater. The present paper reviews the recent trend in research on the decolorization and biodegradation of dyes by various fungi, and improvements in bioreactors and bioprocesses involved the fungal treatment of dye wastewater. It also discusses alternatives and perspectives for the innovation of mycoremediation to treat dye wastewaters.

From Cell Biology to Biotechnology in Space

  • Cogoli, Augusto
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.195-200
    • /
    • 2000
  • In this article I discuss the main results of our research in space biology from the simple early investigations with human Iymphocytes in the early eighties until the projects in tissue engineering of the next decade on the international space station ISS. The discovery that T Iymphocyte activation is nearly totally depressed in vitro in 0g conditions showed that mammalian single cells are sensitive to the gravitational environment. Such finding had important implications in basic research, medicine and biotechnology. Low gravity can be used as a tool to investigate complicated and still obscure biological process from a new perspective not available to earth-bound laboratories. Low gravity may also favor certain bioprocesses involving the growth of tissues and thus lead to commercial and medical applications. However, shortage of crew time and of other resources, lack of sophisticated instrumentation, safety constraints pose serious limits to biological endeavors in space laboratories.

  • PDF

UV Spectrometric and DC Polarographic Studies on Apigenin and Luteolin

  • Romanova, Darina;Vachalkiova, Anna
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.173-178
    • /
    • 1999
  • Remarks on polyphenolic compounds has been arisen since past few years. the flavonoids appears to be the important groups of compounds with their capability to inhibit DNA damage, lipid peroxidation, to quench free radicals and, at least, anticarcinogenic and antiproliferative effects. On the other hand, their mechanism of action is still unexplained. Apigenin and luteolin are the most wide-spread flavones and they exhibited to be useful in chemoprevention. UV spectrometric and DC polarographic studies on these two compounds have been carried out with regard to changing pH. The most significant changes were observed at basic pH. These results could aid to elucidation of their mechanism of action as pH is one of the important factors for bioprocesses passing in living organisms.

  • PDF